Metamath Proof Explorer


Theorem sge0ad2en

Description: The value of the infinite geometric series 2 ^ -u 1 + 2 ^ -u 2 + ... , multiplied by a constant. (Contributed by Glauco Siliprandi, 11-Oct-2020)

Ref Expression
Hypothesis sge0ad2en.1 φA0+∞
Assertion sge0ad2en φsum^nA2n=A

Proof

Step Hyp Ref Expression
1 sge0ad2en.1 φA0+∞
2 nfv nφ
3 0xr 0*
4 3 a1i φn0*
5 pnfxr +∞*
6 5 a1i φn+∞*
7 rge0ssre 0+∞
8 7 1 sselid φA
9 8 adantr φnA
10 2re 2
11 10 a1i φn2
12 nnnn0 nn0
13 12 adantl φnn0
14 11 13 reexpcld φn2n
15 2cnd φn2
16 2ne0 20
17 16 a1i φn20
18 13 nn0zd φnn
19 15 17 18 expne0d φn2n0
20 9 14 19 redivcld φnA2n
21 20 rexrd φnA2n*
22 2rp 2+
23 22 a1i φn2+
24 23 18 rpexpcld φn2n+
25 3 a1i φ0*
26 5 a1i φ+∞*
27 icogelb 0*+∞*A0+∞0A
28 25 26 1 27 syl3anc φ0A
29 28 adantr φn0A
30 9 24 29 divge0d φn0A2n
31 20 ltpnfd φnA2n<+∞
32 4 6 21 30 31 elicod φnA2n0+∞
33 1zzd φ1
34 nnuz =1
35 8 recnd φA
36 eqid nA2n=nA2n
37 36 geo2lim Aseq1+nA2nA
38 35 37 syl φseq1+nA2nA
39 2 32 33 34 38 sge0isummpt φsum^nA2n=A