Step |
Hyp |
Ref |
Expression |
1 |
|
sge0ad2en.1 |
|
2 |
|
nfv |
|
3 |
|
0xr |
|
4 |
3
|
a1i |
|
5 |
|
pnfxr |
|
6 |
5
|
a1i |
|
7 |
|
rge0ssre |
|
8 |
7 1
|
sselid |
|
9 |
8
|
adantr |
|
10 |
|
2re |
|
11 |
10
|
a1i |
|
12 |
|
nnnn0 |
|
13 |
12
|
adantl |
|
14 |
11 13
|
reexpcld |
|
15 |
|
2cnd |
|
16 |
|
2ne0 |
|
17 |
16
|
a1i |
|
18 |
13
|
nn0zd |
|
19 |
15 17 18
|
expne0d |
|
20 |
9 14 19
|
redivcld |
|
21 |
20
|
rexrd |
|
22 |
|
2rp |
|
23 |
22
|
a1i |
|
24 |
23 18
|
rpexpcld |
|
25 |
3
|
a1i |
|
26 |
5
|
a1i |
|
27 |
|
icogelb |
|
28 |
25 26 1 27
|
syl3anc |
|
29 |
28
|
adantr |
|
30 |
9 24 29
|
divge0d |
|
31 |
20
|
ltpnfd |
|
32 |
4 6 21 30 31
|
elicod |
|
33 |
|
1zzd |
|
34 |
|
nnuz |
|
35 |
8
|
recnd |
|
36 |
|
eqid |
|
37 |
36
|
geo2lim |
|
38 |
35 37
|
syl |
|
39 |
2 32 33 34 38
|
sge0isummpt |
|