Metamath Proof Explorer


Theorem sge0ad2en

Description: The value of the infinite geometric series 2 ^ -u 1 + 2 ^ -u 2 + ... , multiplied by a constant. (Contributed by Glauco Siliprandi, 11-Oct-2020)

Ref Expression
Hypothesis sge0ad2en.1 φ A 0 +∞
Assertion sge0ad2en φ sum^ n A 2 n = A

Proof

Step Hyp Ref Expression
1 sge0ad2en.1 φ A 0 +∞
2 nfv n φ
3 0xr 0 *
4 3 a1i φ n 0 *
5 pnfxr +∞ *
6 5 a1i φ n +∞ *
7 rge0ssre 0 +∞
8 7 1 sselid φ A
9 8 adantr φ n A
10 2re 2
11 10 a1i φ n 2
12 nnnn0 n n 0
13 12 adantl φ n n 0
14 11 13 reexpcld φ n 2 n
15 2cnd φ n 2
16 2ne0 2 0
17 16 a1i φ n 2 0
18 13 nn0zd φ n n
19 15 17 18 expne0d φ n 2 n 0
20 9 14 19 redivcld φ n A 2 n
21 20 rexrd φ n A 2 n *
22 2rp 2 +
23 22 a1i φ n 2 +
24 23 18 rpexpcld φ n 2 n +
25 3 a1i φ 0 *
26 5 a1i φ +∞ *
27 icogelb 0 * +∞ * A 0 +∞ 0 A
28 25 26 1 27 syl3anc φ 0 A
29 28 adantr φ n 0 A
30 9 24 29 divge0d φ n 0 A 2 n
31 20 ltpnfd φ n A 2 n < +∞
32 4 6 21 30 31 elicod φ n A 2 n 0 +∞
33 1zzd φ 1
34 nnuz = 1
35 8 recnd φ A
36 eqid n A 2 n = n A 2 n
37 36 geo2lim A seq 1 + n A 2 n A
38 35 37 syl φ seq 1 + n A 2 n A
39 2 32 33 34 38 sge0isummpt φ sum^ n A 2 n = A