Step |
Hyp |
Ref |
Expression |
1 |
|
sge0ltfirpmpt2.xph |
|
2 |
|
sge0ltfirpmpt2.a |
|
3 |
|
sge0ltfirpmpt2.b |
|
4 |
|
sge0ltfirpmpt2.rp |
|
5 |
|
sge0ltfirpmpt2.re |
|
6 |
|
eqid |
|
7 |
1 3 6
|
fmptdf |
|
8 |
2 7 4 5
|
sge0ltfirp |
|
9 |
|
simpr |
|
10 |
|
elpwinss |
|
11 |
10
|
resmptd |
|
12 |
11
|
fveq2d |
|
13 |
12
|
adantl |
|
14 |
|
elinel2 |
|
15 |
14
|
adantl |
|
16 |
|
nfv |
|
17 |
1 16
|
nfan |
|
18 |
|
simpll |
|
19 |
10
|
sselda |
|
20 |
19
|
adantll |
|
21 |
1 2 3 5
|
sge0rernmpt |
|
22 |
18 20 21
|
syl2anc |
|
23 |
|
eqid |
|
24 |
17 22 23
|
fmptdf |
|
25 |
15 24
|
sge0fsum |
|
26 |
|
simpr |
|
27 |
|
simpll |
|
28 |
10
|
sselda |
|
29 |
28
|
adantll |
|
30 |
|
nfv |
|
31 |
1 30
|
nfan |
|
32 |
|
nfcsb1v |
|
33 |
32
|
nfel1 |
|
34 |
31 33
|
nfim |
|
35 |
|
eleq1w |
|
36 |
35
|
anbi2d |
|
37 |
|
csbeq1a |
|
38 |
37
|
eleq1d |
|
39 |
36 38
|
imbi12d |
|
40 |
34 39 21
|
chvarfv |
|
41 |
27 29 40
|
syl2anc |
|
42 |
|
nfcv |
|
43 |
42 32 37
|
cbvmpt |
|
44 |
43
|
fvmpt2 |
|
45 |
26 41 44
|
syl2anc |
|
46 |
45
|
sumeq2dv |
|
47 |
|
eqcom |
|
48 |
47
|
imbi1i |
|
49 |
|
eqcom |
|
50 |
49
|
imbi2i |
|
51 |
48 50
|
bitri |
|
52 |
37 51
|
mpbi |
|
53 |
|
nfcv |
|
54 |
|
nfcv |
|
55 |
52 53 54 32 42
|
cbvsum |
|
56 |
55
|
a1i |
|
57 |
46 56
|
eqtrd |
|
58 |
13 25 57
|
3eqtrd |
|
59 |
58
|
oveq1d |
|
60 |
59
|
adantr |
|
61 |
9 60
|
breqtrd |
|
62 |
61
|
ex |
|
63 |
62
|
reximdva |
|
64 |
8 63
|
mpd |
|