Metamath Proof Explorer


Theorem sge0revalmpt

Description: Value of the sum of nonnegative extended reals, when all terms in the sum are reals. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses sge0revalmpt.1 xφ
sge0revalmpt.2 φAV
sge0revalmpt.3 φxAB0+∞
Assertion sge0revalmpt φsum^xAB=suprany𝒫AFinxyB*<

Proof

Step Hyp Ref Expression
1 sge0revalmpt.1 xφ
2 sge0revalmpt.2 φAV
3 sge0revalmpt.3 φxAB0+∞
4 eqid xAB=xAB
5 1 3 4 fmptdf φxAB:A0+∞
6 2 5 sge0reval φsum^xAB=suprany𝒫AFinzyxABz*<
7 fveq2 z=xxABz=xABx
8 nfcv _xy
9 nfcv _zy
10 nfmpt1 _xxAB
11 nfcv _xz
12 10 11 nffv _xxABz
13 nfcv _zxABx
14 7 8 9 12 13 cbvsum zyxABz=xyxABx
15 14 a1i φy𝒫AFinzyxABz=xyxABx
16 nfv xy𝒫AFin
17 1 16 nfan xφy𝒫AFin
18 elpwinss y𝒫AFinyA
19 18 adantr y𝒫AFinxyyA
20 simpr y𝒫AFinxyxy
21 19 20 sseldd y𝒫AFinxyxA
22 21 adantll φy𝒫AFinxyxA
23 simpll φy𝒫AFinxyφ
24 23 22 3 syl2anc φy𝒫AFinxyB0+∞
25 4 fvmpt2 xAB0+∞xABx=B
26 22 24 25 syl2anc φy𝒫AFinxyxABx=B
27 26 ex φy𝒫AFinxyxABx=B
28 17 27 ralrimi φy𝒫AFinxyxABx=B
29 sumeq2 xyxABx=BxyxABx=xyB
30 28 29 syl φy𝒫AFinxyxABx=xyB
31 15 30 eqtrd φy𝒫AFinzyxABz=xyB
32 31 mpteq2dva φy𝒫AFinzyxABz=y𝒫AFinxyB
33 32 rneqd φrany𝒫AFinzyxABz=rany𝒫AFinxyB
34 33 supeq1d φsuprany𝒫AFinzyxABz*<=suprany𝒫AFinxyB*<
35 6 34 eqtrd φsum^xAB=suprany𝒫AFinxyB*<