Metamath Proof Explorer


Theorem sgrppropd

Description: If two structures are sets, have the same base set, and the values of their group (addition) operations are equal for all pairs of elements of the base set, one is a semigroup iff the other one is. (Contributed by AV, 15-Feb-2025)

Ref Expression
Hypotheses sgrppropd.k φKV
sgrppropd.l φLW
sgrppropd.1 φB=BaseK
sgrppropd.2 φB=BaseL
sgrppropd.3 φxByBx+Ky=x+Ly
Assertion sgrppropd Could not format assertion : No typesetting found for |- ( ph -> ( K e. Smgrp <-> L e. Smgrp ) ) with typecode |-

Proof

Step Hyp Ref Expression
1 sgrppropd.k φKV
2 sgrppropd.l φLW
3 sgrppropd.1 φB=BaseK
4 sgrppropd.2 φB=BaseL
5 sgrppropd.3 φxByBx+Ky=x+Ly
6 simplr Could not format ( ( ( ph /\ K e. Smgrp ) /\ ( x e. B /\ y e. B ) ) -> K e. Smgrp ) : No typesetting found for |- ( ( ( ph /\ K e. Smgrp ) /\ ( x e. B /\ y e. B ) ) -> K e. Smgrp ) with typecode |-
7 simprl Could not format ( ( ( ph /\ K e. Smgrp ) /\ ( x e. B /\ y e. B ) ) -> x e. B ) : No typesetting found for |- ( ( ( ph /\ K e. Smgrp ) /\ ( x e. B /\ y e. B ) ) -> x e. B ) with typecode |-
8 3 ad2antrr Could not format ( ( ( ph /\ K e. Smgrp ) /\ ( x e. B /\ y e. B ) ) -> B = ( Base ` K ) ) : No typesetting found for |- ( ( ( ph /\ K e. Smgrp ) /\ ( x e. B /\ y e. B ) ) -> B = ( Base ` K ) ) with typecode |-
9 7 8 eleqtrd Could not format ( ( ( ph /\ K e. Smgrp ) /\ ( x e. B /\ y e. B ) ) -> x e. ( Base ` K ) ) : No typesetting found for |- ( ( ( ph /\ K e. Smgrp ) /\ ( x e. B /\ y e. B ) ) -> x e. ( Base ` K ) ) with typecode |-
10 simprr Could not format ( ( ( ph /\ K e. Smgrp ) /\ ( x e. B /\ y e. B ) ) -> y e. B ) : No typesetting found for |- ( ( ( ph /\ K e. Smgrp ) /\ ( x e. B /\ y e. B ) ) -> y e. B ) with typecode |-
11 10 8 eleqtrd Could not format ( ( ( ph /\ K e. Smgrp ) /\ ( x e. B /\ y e. B ) ) -> y e. ( Base ` K ) ) : No typesetting found for |- ( ( ( ph /\ K e. Smgrp ) /\ ( x e. B /\ y e. B ) ) -> y e. ( Base ` K ) ) with typecode |-
12 eqid BaseK=BaseK
13 eqid +K=+K
14 12 13 sgrpcl Could not format ( ( K e. Smgrp /\ x e. ( Base ` K ) /\ y e. ( Base ` K ) ) -> ( x ( +g ` K ) y ) e. ( Base ` K ) ) : No typesetting found for |- ( ( K e. Smgrp /\ x e. ( Base ` K ) /\ y e. ( Base ` K ) ) -> ( x ( +g ` K ) y ) e. ( Base ` K ) ) with typecode |-
15 6 9 11 14 syl3anc Could not format ( ( ( ph /\ K e. Smgrp ) /\ ( x e. B /\ y e. B ) ) -> ( x ( +g ` K ) y ) e. ( Base ` K ) ) : No typesetting found for |- ( ( ( ph /\ K e. Smgrp ) /\ ( x e. B /\ y e. B ) ) -> ( x ( +g ` K ) y ) e. ( Base ` K ) ) with typecode |-
16 15 8 eleqtrrd Could not format ( ( ( ph /\ K e. Smgrp ) /\ ( x e. B /\ y e. B ) ) -> ( x ( +g ` K ) y ) e. B ) : No typesetting found for |- ( ( ( ph /\ K e. Smgrp ) /\ ( x e. B /\ y e. B ) ) -> ( x ( +g ` K ) y ) e. B ) with typecode |-
17 16 ralrimivva Could not format ( ( ph /\ K e. Smgrp ) -> A. x e. B A. y e. B ( x ( +g ` K ) y ) e. B ) : No typesetting found for |- ( ( ph /\ K e. Smgrp ) -> A. x e. B A. y e. B ( x ( +g ` K ) y ) e. B ) with typecode |-
18 17 ex Could not format ( ph -> ( K e. Smgrp -> A. x e. B A. y e. B ( x ( +g ` K ) y ) e. B ) ) : No typesetting found for |- ( ph -> ( K e. Smgrp -> A. x e. B A. y e. B ( x ( +g ` K ) y ) e. B ) ) with typecode |-
19 simplr Could not format ( ( ( ph /\ L e. Smgrp ) /\ ( x e. B /\ y e. B ) ) -> L e. Smgrp ) : No typesetting found for |- ( ( ( ph /\ L e. Smgrp ) /\ ( x e. B /\ y e. B ) ) -> L e. Smgrp ) with typecode |-
20 simprl Could not format ( ( ( ph /\ L e. Smgrp ) /\ ( x e. B /\ y e. B ) ) -> x e. B ) : No typesetting found for |- ( ( ( ph /\ L e. Smgrp ) /\ ( x e. B /\ y e. B ) ) -> x e. B ) with typecode |-
21 4 ad2antrr Could not format ( ( ( ph /\ L e. Smgrp ) /\ ( x e. B /\ y e. B ) ) -> B = ( Base ` L ) ) : No typesetting found for |- ( ( ( ph /\ L e. Smgrp ) /\ ( x e. B /\ y e. B ) ) -> B = ( Base ` L ) ) with typecode |-
22 20 21 eleqtrd Could not format ( ( ( ph /\ L e. Smgrp ) /\ ( x e. B /\ y e. B ) ) -> x e. ( Base ` L ) ) : No typesetting found for |- ( ( ( ph /\ L e. Smgrp ) /\ ( x e. B /\ y e. B ) ) -> x e. ( Base ` L ) ) with typecode |-
23 simprr Could not format ( ( ( ph /\ L e. Smgrp ) /\ ( x e. B /\ y e. B ) ) -> y e. B ) : No typesetting found for |- ( ( ( ph /\ L e. Smgrp ) /\ ( x e. B /\ y e. B ) ) -> y e. B ) with typecode |-
24 23 21 eleqtrd Could not format ( ( ( ph /\ L e. Smgrp ) /\ ( x e. B /\ y e. B ) ) -> y e. ( Base ` L ) ) : No typesetting found for |- ( ( ( ph /\ L e. Smgrp ) /\ ( x e. B /\ y e. B ) ) -> y e. ( Base ` L ) ) with typecode |-
25 eqid BaseL=BaseL
26 eqid +L=+L
27 25 26 sgrpcl Could not format ( ( L e. Smgrp /\ x e. ( Base ` L ) /\ y e. ( Base ` L ) ) -> ( x ( +g ` L ) y ) e. ( Base ` L ) ) : No typesetting found for |- ( ( L e. Smgrp /\ x e. ( Base ` L ) /\ y e. ( Base ` L ) ) -> ( x ( +g ` L ) y ) e. ( Base ` L ) ) with typecode |-
28 19 22 24 27 syl3anc Could not format ( ( ( ph /\ L e. Smgrp ) /\ ( x e. B /\ y e. B ) ) -> ( x ( +g ` L ) y ) e. ( Base ` L ) ) : No typesetting found for |- ( ( ( ph /\ L e. Smgrp ) /\ ( x e. B /\ y e. B ) ) -> ( x ( +g ` L ) y ) e. ( Base ` L ) ) with typecode |-
29 5 adantlr Could not format ( ( ( ph /\ L e. Smgrp ) /\ ( x e. B /\ y e. B ) ) -> ( x ( +g ` K ) y ) = ( x ( +g ` L ) y ) ) : No typesetting found for |- ( ( ( ph /\ L e. Smgrp ) /\ ( x e. B /\ y e. B ) ) -> ( x ( +g ` K ) y ) = ( x ( +g ` L ) y ) ) with typecode |-
30 28 29 21 3eltr4d Could not format ( ( ( ph /\ L e. Smgrp ) /\ ( x e. B /\ y e. B ) ) -> ( x ( +g ` K ) y ) e. B ) : No typesetting found for |- ( ( ( ph /\ L e. Smgrp ) /\ ( x e. B /\ y e. B ) ) -> ( x ( +g ` K ) y ) e. B ) with typecode |-
31 30 ralrimivva Could not format ( ( ph /\ L e. Smgrp ) -> A. x e. B A. y e. B ( x ( +g ` K ) y ) e. B ) : No typesetting found for |- ( ( ph /\ L e. Smgrp ) -> A. x e. B A. y e. B ( x ( +g ` K ) y ) e. B ) with typecode |-
32 31 ex Could not format ( ph -> ( L e. Smgrp -> A. x e. B A. y e. B ( x ( +g ` K ) y ) e. B ) ) : No typesetting found for |- ( ph -> ( L e. Smgrp -> A. x e. B A. y e. B ( x ( +g ` K ) y ) e. B ) ) with typecode |-
33 12 13 issgrpv Could not format ( K e. V -> ( K e. Smgrp <-> A. u e. ( Base ` K ) A. v e. ( Base ` K ) ( ( u ( +g ` K ) v ) e. ( Base ` K ) /\ A. w e. ( Base ` K ) ( ( u ( +g ` K ) v ) ( +g ` K ) w ) = ( u ( +g ` K ) ( v ( +g ` K ) w ) ) ) ) ) : No typesetting found for |- ( K e. V -> ( K e. Smgrp <-> A. u e. ( Base ` K ) A. v e. ( Base ` K ) ( ( u ( +g ` K ) v ) e. ( Base ` K ) /\ A. w e. ( Base ` K ) ( ( u ( +g ` K ) v ) ( +g ` K ) w ) = ( u ( +g ` K ) ( v ( +g ` K ) w ) ) ) ) ) with typecode |-
34 1 33 syl Could not format ( ph -> ( K e. Smgrp <-> A. u e. ( Base ` K ) A. v e. ( Base ` K ) ( ( u ( +g ` K ) v ) e. ( Base ` K ) /\ A. w e. ( Base ` K ) ( ( u ( +g ` K ) v ) ( +g ` K ) w ) = ( u ( +g ` K ) ( v ( +g ` K ) w ) ) ) ) ) : No typesetting found for |- ( ph -> ( K e. Smgrp <-> A. u e. ( Base ` K ) A. v e. ( Base ` K ) ( ( u ( +g ` K ) v ) e. ( Base ` K ) /\ A. w e. ( Base ` K ) ( ( u ( +g ` K ) v ) ( +g ` K ) w ) = ( u ( +g ` K ) ( v ( +g ` K ) w ) ) ) ) ) with typecode |-
35 34 adantr Could not format ( ( ph /\ A. x e. B A. y e. B ( x ( +g ` K ) y ) e. B ) -> ( K e. Smgrp <-> A. u e. ( Base ` K ) A. v e. ( Base ` K ) ( ( u ( +g ` K ) v ) e. ( Base ` K ) /\ A. w e. ( Base ` K ) ( ( u ( +g ` K ) v ) ( +g ` K ) w ) = ( u ( +g ` K ) ( v ( +g ` K ) w ) ) ) ) ) : No typesetting found for |- ( ( ph /\ A. x e. B A. y e. B ( x ( +g ` K ) y ) e. B ) -> ( K e. Smgrp <-> A. u e. ( Base ` K ) A. v e. ( Base ` K ) ( ( u ( +g ` K ) v ) e. ( Base ` K ) /\ A. w e. ( Base ` K ) ( ( u ( +g ` K ) v ) ( +g ` K ) w ) = ( u ( +g ` K ) ( v ( +g ` K ) w ) ) ) ) ) with typecode |-
36 5 oveqrspc2v φuBvBu+Kv=u+Lv
37 36 adantlr φxByBx+KyBuBvBu+Kv=u+Lv
38 37 eleq1d φxByBx+KyBuBvBu+KvBu+LvB
39 simplll φxByBx+KyBuBvBwBφ
40 simplrl φxByBx+KyBuBvBwBuB
41 simplrr φxByBx+KyBuBvBwBvB
42 simpllr φxByBx+KyBuBvBwBxByBx+KyB
43 ovrspc2v uBvBxByBx+KyBu+KvB
44 40 41 42 43 syl21anc φxByBx+KyBuBvBwBu+KvB
45 simpr φxByBx+KyBuBvBwBwB
46 5 oveqrspc2v φu+KvBwBu+Kv+Kw=u+Kv+Lw
47 39 44 45 46 syl12anc φxByBx+KyBuBvBwBu+Kv+Kw=u+Kv+Lw
48 39 40 41 36 syl12anc φxByBx+KyBuBvBwBu+Kv=u+Lv
49 48 oveq1d φxByBx+KyBuBvBwBu+Kv+Lw=u+Lv+Lw
50 47 49 eqtrd φxByBx+KyBuBvBwBu+Kv+Kw=u+Lv+Lw
51 ovrspc2v vBwBxByBx+KyBv+KwB
52 41 45 42 51 syl21anc φxByBx+KyBuBvBwBv+KwB
53 5 oveqrspc2v φuBv+KwBu+Kv+Kw=u+Lv+Kw
54 39 40 52 53 syl12anc φxByBx+KyBuBvBwBu+Kv+Kw=u+Lv+Kw
55 5 oveqrspc2v φvBwBv+Kw=v+Lw
56 39 41 45 55 syl12anc φxByBx+KyBuBvBwBv+Kw=v+Lw
57 56 oveq2d φxByBx+KyBuBvBwBu+Lv+Kw=u+Lv+Lw
58 54 57 eqtrd φxByBx+KyBuBvBwBu+Kv+Kw=u+Lv+Lw
59 50 58 eqeq12d φxByBx+KyBuBvBwBu+Kv+Kw=u+Kv+Kwu+Lv+Lw=u+Lv+Lw
60 59 ralbidva φxByBx+KyBuBvBwBu+Kv+Kw=u+Kv+KwwBu+Lv+Lw=u+Lv+Lw
61 38 60 anbi12d φxByBx+KyBuBvBu+KvBwBu+Kv+Kw=u+Kv+Kwu+LvBwBu+Lv+Lw=u+Lv+Lw
62 61 2ralbidva φxByBx+KyBuBvBu+KvBwBu+Kv+Kw=u+Kv+KwuBvBu+LvBwBu+Lv+Lw=u+Lv+Lw
63 3 adantr φxByBx+KyBB=BaseK
64 63 eleq2d φxByBx+KyBu+KvBu+KvBaseK
65 63 raleqdv φxByBx+KyBwBu+Kv+Kw=u+Kv+KwwBaseKu+Kv+Kw=u+Kv+Kw
66 64 65 anbi12d φxByBx+KyBu+KvBwBu+Kv+Kw=u+Kv+Kwu+KvBaseKwBaseKu+Kv+Kw=u+Kv+Kw
67 63 66 raleqbidv φxByBx+KyBvBu+KvBwBu+Kv+Kw=u+Kv+KwvBaseKu+KvBaseKwBaseKu+Kv+Kw=u+Kv+Kw
68 63 67 raleqbidv φxByBx+KyBuBvBu+KvBwBu+Kv+Kw=u+Kv+KwuBaseKvBaseKu+KvBaseKwBaseKu+Kv+Kw=u+Kv+Kw
69 4 adantr φxByBx+KyBB=BaseL
70 69 eleq2d φxByBx+KyBu+LvBu+LvBaseL
71 69 raleqdv φxByBx+KyBwBu+Lv+Lw=u+Lv+LwwBaseLu+Lv+Lw=u+Lv+Lw
72 70 71 anbi12d φxByBx+KyBu+LvBwBu+Lv+Lw=u+Lv+Lwu+LvBaseLwBaseLu+Lv+Lw=u+Lv+Lw
73 69 72 raleqbidv φxByBx+KyBvBu+LvBwBu+Lv+Lw=u+Lv+LwvBaseLu+LvBaseLwBaseLu+Lv+Lw=u+Lv+Lw
74 69 73 raleqbidv φxByBx+KyBuBvBu+LvBwBu+Lv+Lw=u+Lv+LwuBaseLvBaseLu+LvBaseLwBaseLu+Lv+Lw=u+Lv+Lw
75 62 68 74 3bitr3d φxByBx+KyBuBaseKvBaseKu+KvBaseKwBaseKu+Kv+Kw=u+Kv+KwuBaseLvBaseLu+LvBaseLwBaseLu+Lv+Lw=u+Lv+Lw
76 25 26 issgrpv Could not format ( L e. W -> ( L e. Smgrp <-> A. u e. ( Base ` L ) A. v e. ( Base ` L ) ( ( u ( +g ` L ) v ) e. ( Base ` L ) /\ A. w e. ( Base ` L ) ( ( u ( +g ` L ) v ) ( +g ` L ) w ) = ( u ( +g ` L ) ( v ( +g ` L ) w ) ) ) ) ) : No typesetting found for |- ( L e. W -> ( L e. Smgrp <-> A. u e. ( Base ` L ) A. v e. ( Base ` L ) ( ( u ( +g ` L ) v ) e. ( Base ` L ) /\ A. w e. ( Base ` L ) ( ( u ( +g ` L ) v ) ( +g ` L ) w ) = ( u ( +g ` L ) ( v ( +g ` L ) w ) ) ) ) ) with typecode |-
77 2 76 syl Could not format ( ph -> ( L e. Smgrp <-> A. u e. ( Base ` L ) A. v e. ( Base ` L ) ( ( u ( +g ` L ) v ) e. ( Base ` L ) /\ A. w e. ( Base ` L ) ( ( u ( +g ` L ) v ) ( +g ` L ) w ) = ( u ( +g ` L ) ( v ( +g ` L ) w ) ) ) ) ) : No typesetting found for |- ( ph -> ( L e. Smgrp <-> A. u e. ( Base ` L ) A. v e. ( Base ` L ) ( ( u ( +g ` L ) v ) e. ( Base ` L ) /\ A. w e. ( Base ` L ) ( ( u ( +g ` L ) v ) ( +g ` L ) w ) = ( u ( +g ` L ) ( v ( +g ` L ) w ) ) ) ) ) with typecode |-
78 77 bicomd Could not format ( ph -> ( A. u e. ( Base ` L ) A. v e. ( Base ` L ) ( ( u ( +g ` L ) v ) e. ( Base ` L ) /\ A. w e. ( Base ` L ) ( ( u ( +g ` L ) v ) ( +g ` L ) w ) = ( u ( +g ` L ) ( v ( +g ` L ) w ) ) ) <-> L e. Smgrp ) ) : No typesetting found for |- ( ph -> ( A. u e. ( Base ` L ) A. v e. ( Base ` L ) ( ( u ( +g ` L ) v ) e. ( Base ` L ) /\ A. w e. ( Base ` L ) ( ( u ( +g ` L ) v ) ( +g ` L ) w ) = ( u ( +g ` L ) ( v ( +g ` L ) w ) ) ) <-> L e. Smgrp ) ) with typecode |-
79 78 adantr Could not format ( ( ph /\ A. x e. B A. y e. B ( x ( +g ` K ) y ) e. B ) -> ( A. u e. ( Base ` L ) A. v e. ( Base ` L ) ( ( u ( +g ` L ) v ) e. ( Base ` L ) /\ A. w e. ( Base ` L ) ( ( u ( +g ` L ) v ) ( +g ` L ) w ) = ( u ( +g ` L ) ( v ( +g ` L ) w ) ) ) <-> L e. Smgrp ) ) : No typesetting found for |- ( ( ph /\ A. x e. B A. y e. B ( x ( +g ` K ) y ) e. B ) -> ( A. u e. ( Base ` L ) A. v e. ( Base ` L ) ( ( u ( +g ` L ) v ) e. ( Base ` L ) /\ A. w e. ( Base ` L ) ( ( u ( +g ` L ) v ) ( +g ` L ) w ) = ( u ( +g ` L ) ( v ( +g ` L ) w ) ) ) <-> L e. Smgrp ) ) with typecode |-
80 35 75 79 3bitrd Could not format ( ( ph /\ A. x e. B A. y e. B ( x ( +g ` K ) y ) e. B ) -> ( K e. Smgrp <-> L e. Smgrp ) ) : No typesetting found for |- ( ( ph /\ A. x e. B A. y e. B ( x ( +g ` K ) y ) e. B ) -> ( K e. Smgrp <-> L e. Smgrp ) ) with typecode |-
81 80 ex Could not format ( ph -> ( A. x e. B A. y e. B ( x ( +g ` K ) y ) e. B -> ( K e. Smgrp <-> L e. Smgrp ) ) ) : No typesetting found for |- ( ph -> ( A. x e. B A. y e. B ( x ( +g ` K ) y ) e. B -> ( K e. Smgrp <-> L e. Smgrp ) ) ) with typecode |-
82 18 32 81 pm5.21ndd Could not format ( ph -> ( K e. Smgrp <-> L e. Smgrp ) ) : No typesetting found for |- ( ph -> ( K e. Smgrp <-> L e. Smgrp ) ) with typecode |-