Metamath Proof Explorer


Theorem signstcl

Description: Closure of the zero skipping sign word. (Contributed by Thierry Arnoux, 9-Oct-2018)

Ref Expression
Hypotheses signsv.p ˙=a101,b101ifb=0ab
signsv.w W=Basendx101+ndx˙
signsv.t T=fWordn0..^fWi=0nsgnfi
signsv.v V=fWordj1..^fifTfjTfj110
Assertion signstcl FWordN0..^FTFN101

Proof

Step Hyp Ref Expression
1 signsv.p ˙=a101,b101ifb=0ab
2 signsv.w W=Basendx101+ndx˙
3 signsv.t T=fWordn0..^fWi=0nsgnfi
4 signsv.v V=fWordj1..^fifTfjTfj110
5 1 2 3 4 signstfval FWordN0..^FTFN=Wi=0NsgnFi
6 1 2 signswbase 101=BaseW
7 1 2 signswmnd WMnd
8 7 a1i FWordN0..^FWMnd
9 fzo0ssnn0 0..^F0
10 nn0uz 0=0
11 9 10 sseqtri 0..^F0
12 11 a1i FWord0..^F0
13 12 sselda FWordN0..^FN0
14 wrdf FWordF:0..^F
15 14 ad2antrr FWordN0..^Fi0NF:0..^F
16 fzssfzo N0..^F0N0..^F
17 16 adantl FWordN0..^F0N0..^F
18 17 sselda FWordN0..^Fi0Ni0..^F
19 15 18 ffvelcdmd FWordN0..^Fi0NFi
20 19 rexrd FWordN0..^Fi0NFi*
21 sgncl Fi*sgnFi101
22 20 21 syl FWordN0..^Fi0NsgnFi101
23 6 8 13 22 gsumncl FWordN0..^FWi=0NsgnFi101
24 5 23 eqeltrd FWordN0..^FTFN101