Metamath Proof Explorer


Theorem sincosq4sgn

Description: The signs of the sine and cosine functions in the fourth quadrant. (Contributed by Paul Chapman, 24-Jan-2008)

Ref Expression
Assertion sincosq4sgn A3π22πsinA<00<cosA

Proof

Step Hyp Ref Expression
1 3re 3
2 halfpire π2
3 1 2 remulcli 3π2
4 3 rexri 3π2*
5 2re 2
6 pire π
7 5 6 remulcli 2π
8 7 rexri 2π*
9 elioo2 3π2*2π*A3π22πA3π2<AA<2π
10 4 8 9 mp2an A3π22πA3π2<AA<2π
11 df-3 3=2+1
12 11 oveq1i 3π2=2+1π2
13 2cn 2
14 ax-1cn 1
15 2 recni π2
16 13 14 15 adddiri 2+1π2=2π2+1π2
17 6 recni π
18 2ne0 20
19 17 13 18 divcan2i 2π2=π
20 15 mullidi 1π2=π2
21 19 20 oveq12i 2π2+1π2=π+π2
22 12 16 21 3eqtrri π+π2=3π2
23 22 breq1i π+π2<A3π2<A
24 ltaddsub ππ2Aπ+π2<Aπ<Aπ2
25 6 2 24 mp3an12 Aπ+π2<Aπ<Aπ2
26 23 25 bitr3id A3π2<Aπ<Aπ2
27 ltsubadd Aπ23π2Aπ2<3π2A<3π2+π2
28 2 3 27 mp3an23 AAπ2<3π2A<3π2+π2
29 df-4 4=3+1
30 29 oveq1i 4π2=3+1π2
31 1 recni 3
32 31 14 15 adddiri 3+1π2=3π2+1π2
33 20 oveq2i 3π2+1π2=3π2+π2
34 30 32 33 3eqtrri 3π2+π2=4π2
35 4cn 4
36 2cnne0 220
37 div12 4π2204π2=π42
38 35 17 36 37 mp3an 4π2=π42
39 4d2e2 42=2
40 39 oveq2i π42=π2
41 17 13 mulcomi π2=2π
42 40 41 eqtri π42=2π
43 38 42 eqtri 4π2=2π
44 34 43 eqtri 3π2+π2=2π
45 44 breq2i A<3π2+π2A<2π
46 28 45 bitr2di AA<2πAπ2<3π2
47 26 46 anbi12d A3π2<AA<2ππ<Aπ2Aπ2<3π2
48 resubcl Aπ2Aπ2
49 2 48 mpan2 AAπ2
50 6 rexri π*
51 elioo2 π*3π2*Aπ2π3π2Aπ2π<Aπ2Aπ2<3π2
52 50 4 51 mp2an Aπ2π3π2Aπ2π<Aπ2Aπ2<3π2
53 sincosq3sgn Aπ2π3π2sinAπ2<0cosAπ2<0
54 52 53 sylbir Aπ2π<Aπ2Aπ2<3π2sinAπ2<0cosAπ2<0
55 49 54 syl3an1 Aπ<Aπ2Aπ2<3π2sinAπ2<0cosAπ2<0
56 55 3expib Aπ<Aπ2Aπ2<3π2sinAπ2<0cosAπ2<0
57 47 56 sylbid A3π2<AA<2πsinAπ2<0cosAπ2<0
58 49 resincld AsinAπ2
59 58 lt0neg1d AsinAπ2<00<sinAπ2
60 59 anbi1d AsinAπ2<0cosAπ2<00<sinAπ2cosAπ2<0
61 57 60 sylibd A3π2<AA<2π0<sinAπ2cosAπ2<0
62 recn AA
63 pncan3 π2Aπ2+A-π2=A
64 15 62 63 sylancr Aπ2+A-π2=A
65 64 fveq2d Acosπ2+A-π2=cosA
66 49 recnd AAπ2
67 coshalfpip Aπ2cosπ2+A-π2=sinAπ2
68 66 67 syl Acosπ2+A-π2=sinAπ2
69 65 68 eqtr3d AcosA=sinAπ2
70 69 breq2d A0<cosA0<sinAπ2
71 64 fveq2d Asinπ2+A-π2=sinA
72 sinhalfpip Aπ2sinπ2+A-π2=cosAπ2
73 66 72 syl Asinπ2+A-π2=cosAπ2
74 71 73 eqtr3d AsinA=cosAπ2
75 74 breq1d AsinA<0cosAπ2<0
76 70 75 anbi12d A0<cosAsinA<00<sinAπ2cosAπ2<0
77 61 76 sylibrd A3π2<AA<2π0<cosAsinA<0
78 77 3impib A3π2<AA<2π0<cosAsinA<0
79 78 ancomd A3π2<AA<2πsinA<00<cosA
80 10 79 sylbi A3π22πsinA<00<cosA