| Step | Hyp | Ref | Expression | 
						
							| 1 |  | slesolex.a |  | 
						
							| 2 |  | slesolex.b |  | 
						
							| 3 |  | slesolex.v |  | 
						
							| 4 |  | slesolex.x |  | 
						
							| 5 |  | slesolex.d |  | 
						
							| 6 |  | slesolinv.i |  | 
						
							| 7 |  | eqid |  | 
						
							| 8 |  | crngring |  | 
						
							| 9 | 8 | adantl |  | 
						
							| 10 | 9 | 3ad2ant1 |  | 
						
							| 11 | 1 2 | matrcl |  | 
						
							| 12 | 11 | simpld |  | 
						
							| 13 | 12 | adantr |  | 
						
							| 14 | 13 | 3ad2ant2 |  | 
						
							| 15 | 8 | anim2i |  | 
						
							| 16 | 15 | anim1i |  | 
						
							| 17 | 16 | 3adant3 |  | 
						
							| 18 |  | simpr |  | 
						
							| 19 | 18 | 3ad2ant3 |  | 
						
							| 20 | 1 2 3 4 | slesolvec |  | 
						
							| 21 | 17 19 20 | sylc |  | 
						
							| 22 | 21 3 | eleqtrdi |  | 
						
							| 23 |  | eqid |  | 
						
							| 24 | 9 13 | anim12ci |  | 
						
							| 25 | 24 | 3adant3 |  | 
						
							| 26 | 1 | matring |  | 
						
							| 27 | 25 26 | syl |  | 
						
							| 28 |  | eqid |  | 
						
							| 29 |  | eqid |  | 
						
							| 30 | 1 5 2 28 29 | matunit |  | 
						
							| 31 | 30 | bicomd |  | 
						
							| 32 | 31 | ad2ant2lr |  | 
						
							| 33 | 32 | biimpd |  | 
						
							| 34 | 33 | adantrd |  | 
						
							| 35 | 34 | 3impia |  | 
						
							| 36 |  | eqid |  | 
						
							| 37 | 28 6 36 | ringinvcl |  | 
						
							| 38 | 27 35 37 | syl2anc |  | 
						
							| 39 | 2 | eleq2i |  | 
						
							| 40 | 39 | biimpi |  | 
						
							| 41 | 40 | adantr |  | 
						
							| 42 | 41 | 3ad2ant2 |  | 
						
							| 43 | 1 7 4 10 14 22 23 38 42 | mavmulass |  | 
						
							| 44 |  | simpr |  | 
						
							| 45 | 44 13 | anim12ci |  | 
						
							| 46 | 45 | 3adant3 |  | 
						
							| 47 | 1 23 | matmulr |  | 
						
							| 48 | 46 47 | syl |  | 
						
							| 49 | 48 | oveqd |  | 
						
							| 50 |  | eqid |  | 
						
							| 51 |  | eqid |  | 
						
							| 52 | 28 6 50 51 | unitlinv |  | 
						
							| 53 | 27 35 52 | syl2anc |  | 
						
							| 54 | 49 53 | eqtrd |  | 
						
							| 55 | 54 | oveq1d |  | 
						
							| 56 | 1 7 4 10 14 22 | 1mavmul |  | 
						
							| 57 | 55 56 | eqtrd |  | 
						
							| 58 |  | oveq2 |  | 
						
							| 59 | 58 | adantl |  | 
						
							| 60 | 59 | 3ad2ant3 |  | 
						
							| 61 | 43 57 60 | 3eqtr3d |  |