Metamath Proof Explorer


Theorem smfconst

Description: Given a sigma-algebra over a base set X, every partial real-valued constant function is measurable. Proposition 121E (a) of Fremlin1 p. 37 . (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses smfconst.x xφ
smfconst.s φSSAlg
smfconst.a φAS
smfconst.b φB
smfconst.f F=xAB
Assertion smfconst φFSMblFnS

Proof

Step Hyp Ref Expression
1 smfconst.x xφ
2 smfconst.s φSSAlg
3 smfconst.a φAS
4 smfconst.b φB
5 smfconst.f F=xAB
6 nfmpt1 _xxAB
7 5 6 nfcxfr _xF
8 nfv aφ
9 4 adantr φxAB
10 1 9 5 fmptdf φF:A
11 nfv xa
12 1 11 nfan xφa
13 nfv xB<a
14 12 13 nfan xφaB<a
15 4 ad2antrr φaB<aB
16 simpr φaB<aB<a
17 14 15 5 16 pimconstlt1 φaB<axA|Fx<a=A
18 eqidd φaB<aA=A
19 sseqin2 ASSA=A
20 3 19 sylib φSA=A
21 20 eqcomd φA=SA
22 21 ad2antrr φaB<aA=SA
23 17 18 22 3eqtrd φaB<axA|Fx<a=SA
24 2 ad2antrr φaB<aSSAlg
25 2 uniexd φSV
26 25 3 ssexd φAV
27 26 ad2antrr φaB<aAV
28 24 salunid φaB<aSS
29 eqid SA=SA
30 24 27 28 29 elrestd φaB<aSAS𝑡A
31 23 30 eqeltrd φaB<axA|Fx<aS𝑡A
32 nfv x¬B<a
33 12 32 nfan xφa¬B<a
34 4 ad2antrr φa¬B<aB
35 rexr aa*
36 35 ad2antlr φa¬B<aa*
37 simpr φa¬B<a¬B<a
38 simplr φa¬B<aa
39 38 34 lenltd φa¬B<aaB¬B<a
40 37 39 mpbird φa¬B<aaB
41 33 34 5 36 40 pimconstlt0 φa¬B<axA|Fx<a=
42 eqid S𝑡A=S𝑡A
43 2 26 42 subsalsal φS𝑡ASAlg
44 43 0sald φS𝑡A
45 44 ad2antrr φa¬B<aS𝑡A
46 41 45 eqeltrd φa¬B<axA|Fx<aS𝑡A
47 31 46 pm2.61dan φaxA|Fx<aS𝑡A
48 7 8 2 3 10 47 issmfdf φFSMblFnS