Description: Given a sigma-algebra over a base set X, every partial real-valued constant function is measurable. Proposition 121E (a) of Fremlin1 p. 37 . (Contributed by Glauco Siliprandi, 26-Jun-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | smfconst.x | |
|
smfconst.s | |
||
smfconst.a | |
||
smfconst.b | |
||
smfconst.f | |
||
Assertion | smfconst | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | smfconst.x | |
|
2 | smfconst.s | |
|
3 | smfconst.a | |
|
4 | smfconst.b | |
|
5 | smfconst.f | |
|
6 | nfmpt1 | |
|
7 | 5 6 | nfcxfr | |
8 | nfv | |
|
9 | 4 | adantr | |
10 | 1 9 5 | fmptdf | |
11 | nfv | |
|
12 | 1 11 | nfan | |
13 | nfv | |
|
14 | 12 13 | nfan | |
15 | 4 | ad2antrr | |
16 | simpr | |
|
17 | 14 15 5 16 | pimconstlt1 | |
18 | eqidd | |
|
19 | sseqin2 | |
|
20 | 3 19 | sylib | |
21 | 20 | eqcomd | |
22 | 21 | ad2antrr | |
23 | 17 18 22 | 3eqtrd | |
24 | 2 | ad2antrr | |
25 | 2 | uniexd | |
26 | 25 3 | ssexd | |
27 | 26 | ad2antrr | |
28 | 24 | salunid | |
29 | eqid | |
|
30 | 24 27 28 29 | elrestd | |
31 | 23 30 | eqeltrd | |
32 | nfv | |
|
33 | 12 32 | nfan | |
34 | 4 | ad2antrr | |
35 | rexr | |
|
36 | 35 | ad2antlr | |
37 | simpr | |
|
38 | simplr | |
|
39 | 38 34 | lenltd | |
40 | 37 39 | mpbird | |
41 | 33 34 5 36 40 | pimconstlt0 | |
42 | eqid | |
|
43 | 2 26 42 | subsalsal | |
44 | 43 | 0sald | |
45 | 44 | ad2antrr | |
46 | 41 45 | eqeltrd | |
47 | 31 46 | pm2.61dan | |
48 | 7 8 2 3 10 47 | issmfdf | |