Metamath Proof Explorer


Theorem smobeth

Description: The beth function is strictly monotone. This function is not strictly the beth function, but rather beth_A is the same as ( card( R1( _om +o A ) ) ) , since conventionally we start counting at the first infinite level, and ignore the finite levels. (Contributed by Mario Carneiro, 6-Jun-2013) (Revised by Mario Carneiro, 2-Jun-2015)

Ref Expression
Assertion smobeth SmocardR1

Proof

Step Hyp Ref Expression
1 cardf2 card:x|yOnyxOn
2 ffun card:x|yOnyxOnFuncard
3 1 2 ax-mp Funcard
4 r1fnon R1FnOn
5 fnfun R1FnOnFunR1
6 4 5 ax-mp FunR1
7 funco FuncardFunR1FuncardR1
8 3 6 7 mp2an FuncardR1
9 funfn FuncardR1cardR1FndomcardR1
10 8 9 mpbi cardR1FndomcardR1
11 rnco rancardR1=rancardranR1
12 resss cardranR1card
13 12 rnssi rancardranR1rancard
14 frn card:x|yOnyxOnrancardOn
15 1 14 ax-mp rancardOn
16 13 15 sstri rancardranR1On
17 11 16 eqsstri rancardR1On
18 df-f cardR1:domcardR1OncardR1FndomcardR1rancardR1On
19 10 17 18 mpbir2an cardR1:domcardR1On
20 dmco domcardR1=R1-1domcard
21 20 feq2i cardR1:domcardR1OncardR1:R1-1domcardOn
22 19 21 mpbi cardR1:R1-1domcardOn
23 elpreima R1FnOnxR1-1domcardxOnR1xdomcard
24 4 23 ax-mp xR1-1domcardxOnR1xdomcard
25 24 simplbi xR1-1domcardxOn
26 onelon xOnyxyOn
27 25 26 sylan xR1-1domcardyxyOn
28 24 simprbi xR1-1domcardR1xdomcard
29 28 adantr xR1-1domcardyxR1xdomcard
30 r1ord2 xOnyxR1yR1x
31 30 imp xOnyxR1yR1x
32 25 31 sylan xR1-1domcardyxR1yR1x
33 ssnum R1xdomcardR1yR1xR1ydomcard
34 29 32 33 syl2anc xR1-1domcardyxR1ydomcard
35 elpreima R1FnOnyR1-1domcardyOnR1ydomcard
36 4 35 ax-mp yR1-1domcardyOnR1ydomcard
37 27 34 36 sylanbrc xR1-1domcardyxyR1-1domcard
38 37 rgen2 xR1-1domcardyxyR1-1domcard
39 dftr5 TrR1-1domcardxR1-1domcardyxyR1-1domcard
40 38 39 mpbir TrR1-1domcard
41 cnvimass R1-1domcarddomR1
42 dffn2 R1FnOnR1:OnV
43 4 42 mpbi R1:OnV
44 43 fdmi domR1=On
45 41 44 sseqtri R1-1domcardOn
46 epweon EWeOn
47 wess R1-1domcardOnEWeOnEWeR1-1domcard
48 45 46 47 mp2 EWeR1-1domcard
49 df-ord OrdR1-1domcardTrR1-1domcardEWeR1-1domcard
50 40 48 49 mpbir2an OrdR1-1domcard
51 r1sdom xOnyxR1yR1x
52 25 51 sylan xR1-1domcardyxR1yR1x
53 cardsdom2 R1ydomcardR1xdomcardcardR1ycardR1xR1yR1x
54 34 29 53 syl2anc xR1-1domcardyxcardR1ycardR1xR1yR1x
55 52 54 mpbird xR1-1domcardyxcardR1ycardR1x
56 fvco2 R1FnOnyOncardR1y=cardR1y
57 4 27 56 sylancr xR1-1domcardyxcardR1y=cardR1y
58 25 adantr xR1-1domcardyxxOn
59 fvco2 R1FnOnxOncardR1x=cardR1x
60 4 58 59 sylancr xR1-1domcardyxcardR1x=cardR1x
61 55 57 60 3eltr4d xR1-1domcardyxcardR1ycardR1x
62 61 ex xR1-1domcardyxcardR1ycardR1x
63 62 adantl yR1-1domcardxR1-1domcardyxcardR1ycardR1x
64 22 50 63 20 issmo SmocardR1