Description: The beth function is strictly monotone. This function is not strictly the beth function, but rather beth_A is the same as ( card( R1( _om +o A ) ) ) , since conventionally we start counting at the first infinite level, and ignore the finite levels. (Contributed by Mario Carneiro, 6-Jun-2013) (Revised by Mario Carneiro, 2-Jun-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | smobeth | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cardf2 | |
|
2 | ffun | |
|
3 | 1 2 | ax-mp | |
4 | r1fnon | |
|
5 | fnfun | |
|
6 | 4 5 | ax-mp | |
7 | funco | |
|
8 | 3 6 7 | mp2an | |
9 | funfn | |
|
10 | 8 9 | mpbi | |
11 | rnco | |
|
12 | resss | |
|
13 | 12 | rnssi | |
14 | frn | |
|
15 | 1 14 | ax-mp | |
16 | 13 15 | sstri | |
17 | 11 16 | eqsstri | |
18 | df-f | |
|
19 | 10 17 18 | mpbir2an | |
20 | dmco | |
|
21 | 20 | feq2i | |
22 | 19 21 | mpbi | |
23 | elpreima | |
|
24 | 4 23 | ax-mp | |
25 | 24 | simplbi | |
26 | onelon | |
|
27 | 25 26 | sylan | |
28 | 24 | simprbi | |
29 | 28 | adantr | |
30 | r1ord2 | |
|
31 | 30 | imp | |
32 | 25 31 | sylan | |
33 | ssnum | |
|
34 | 29 32 33 | syl2anc | |
35 | elpreima | |
|
36 | 4 35 | ax-mp | |
37 | 27 34 36 | sylanbrc | |
38 | 37 | rgen2 | |
39 | dftr5 | |
|
40 | 38 39 | mpbir | |
41 | cnvimass | |
|
42 | dffn2 | |
|
43 | 4 42 | mpbi | |
44 | 43 | fdmi | |
45 | 41 44 | sseqtri | |
46 | epweon | |
|
47 | wess | |
|
48 | 45 46 47 | mp2 | |
49 | df-ord | |
|
50 | 40 48 49 | mpbir2an | |
51 | r1sdom | |
|
52 | 25 51 | sylan | |
53 | cardsdom2 | |
|
54 | 34 29 53 | syl2anc | |
55 | 52 54 | mpbird | |
56 | fvco2 | |
|
57 | 4 27 56 | sylancr | |
58 | 25 | adantr | |
59 | fvco2 | |
|
60 | 4 58 59 | sylancr | |
61 | 55 57 60 | 3eltr4d | |
62 | 61 | ex | |
63 | 62 | adantl | |
64 | 22 50 63 20 | issmo | |