| Step |
Hyp |
Ref |
Expression |
| 1 |
|
smuval.a |
|
| 2 |
|
smuval.b |
|
| 3 |
|
smuval.p |
|
| 4 |
|
smuval.n |
|
| 5 |
|
nn0uz |
|
| 6 |
4 5
|
eleqtrdi |
|
| 7 |
|
seqp1 |
|
| 8 |
6 7
|
syl |
|
| 9 |
3
|
fveq1i |
|
| 10 |
3
|
fveq1i |
|
| 11 |
10
|
oveq1i |
|
| 12 |
8 9 11
|
3eqtr4g |
|
| 13 |
|
1nn0 |
|
| 14 |
13
|
a1i |
|
| 15 |
4 14
|
nn0addcld |
|
| 16 |
|
eqeq1 |
|
| 17 |
|
oveq1 |
|
| 18 |
16 17
|
ifbieq2d |
|
| 19 |
|
eqid |
|
| 20 |
|
0ex |
|
| 21 |
|
ovex |
|
| 22 |
20 21
|
ifex |
|
| 23 |
18 19 22
|
fvmpt |
|
| 24 |
15 23
|
syl |
|
| 25 |
|
nn0p1nn |
|
| 26 |
4 25
|
syl |
|
| 27 |
26
|
nnne0d |
|
| 28 |
|
ifnefalse |
|
| 29 |
27 28
|
syl |
|
| 30 |
4
|
nn0cnd |
|
| 31 |
14
|
nn0cnd |
|
| 32 |
30 31
|
pncand |
|
| 33 |
24 29 32
|
3eqtrd |
|
| 34 |
33
|
oveq2d |
|
| 35 |
1 2 3
|
smupf |
|
| 36 |
35 4
|
ffvelcdmd |
|
| 37 |
|
simpl |
|
| 38 |
|
simpr |
|
| 39 |
38
|
eleq1d |
|
| 40 |
38
|
oveq2d |
|
| 41 |
40
|
eleq1d |
|
| 42 |
39 41
|
anbi12d |
|
| 43 |
42
|
rabbidv |
|
| 44 |
|
oveq1 |
|
| 45 |
44
|
eleq1d |
|
| 46 |
45
|
anbi2d |
|
| 47 |
46
|
cbvrabv |
|
| 48 |
43 47
|
eqtrdi |
|
| 49 |
37 48
|
oveq12d |
|
| 50 |
|
oveq1 |
|
| 51 |
|
eleq1w |
|
| 52 |
|
oveq2 |
|
| 53 |
52
|
eleq1d |
|
| 54 |
51 53
|
anbi12d |
|
| 55 |
54
|
rabbidv |
|
| 56 |
|
oveq1 |
|
| 57 |
56
|
eleq1d |
|
| 58 |
57
|
anbi2d |
|
| 59 |
58
|
cbvrabv |
|
| 60 |
55 59
|
eqtr4di |
|
| 61 |
60
|
oveq2d |
|
| 62 |
50 61
|
cbvmpov |
|
| 63 |
|
ovex |
|
| 64 |
49 62 63
|
ovmpoa |
|
| 65 |
36 4 64
|
syl2anc |
|
| 66 |
12 34 65
|
3eqtrd |
|