Description: The initial element of the partial sum sequence. (Contributed by Mario Carneiro, 9-Sep-2016)
Ref | Expression | ||
---|---|---|---|
Hypotheses | smuval.a | |
|
smuval.b | |
||
smuval.p | |
||
smuval.n | |
||
Assertion | smupp1 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | smuval.a | |
|
2 | smuval.b | |
|
3 | smuval.p | |
|
4 | smuval.n | |
|
5 | nn0uz | |
|
6 | 4 5 | eleqtrdi | |
7 | seqp1 | |
|
8 | 6 7 | syl | |
9 | 3 | fveq1i | |
10 | 3 | fveq1i | |
11 | 10 | oveq1i | |
12 | 8 9 11 | 3eqtr4g | |
13 | 1nn0 | |
|
14 | 13 | a1i | |
15 | 4 14 | nn0addcld | |
16 | eqeq1 | |
|
17 | oveq1 | |
|
18 | 16 17 | ifbieq2d | |
19 | eqid | |
|
20 | 0ex | |
|
21 | ovex | |
|
22 | 20 21 | ifex | |
23 | 18 19 22 | fvmpt | |
24 | 15 23 | syl | |
25 | nn0p1nn | |
|
26 | 4 25 | syl | |
27 | 26 | nnne0d | |
28 | ifnefalse | |
|
29 | 27 28 | syl | |
30 | 4 | nn0cnd | |
31 | 14 | nn0cnd | |
32 | 30 31 | pncand | |
33 | 24 29 32 | 3eqtrd | |
34 | 33 | oveq2d | |
35 | 1 2 3 | smupf | |
36 | 35 4 | ffvelcdmd | |
37 | simpl | |
|
38 | simpr | |
|
39 | 38 | eleq1d | |
40 | 38 | oveq2d | |
41 | 40 | eleq1d | |
42 | 39 41 | anbi12d | |
43 | 42 | rabbidv | |
44 | oveq1 | |
|
45 | 44 | eleq1d | |
46 | 45 | anbi2d | |
47 | 46 | cbvrabv | |
48 | 43 47 | eqtrdi | |
49 | 37 48 | oveq12d | |
50 | oveq1 | |
|
51 | eleq1w | |
|
52 | oveq2 | |
|
53 | 52 | eleq1d | |
54 | 51 53 | anbi12d | |
55 | 54 | rabbidv | |
56 | oveq1 | |
|
57 | 56 | eleq1d | |
58 | 57 | anbi2d | |
59 | 58 | cbvrabv | |
60 | 55 59 | eqtr4di | |
61 | 60 | oveq2d | |
62 | 50 61 | cbvmpov | |
63 | ovex | |
|
64 | 49 62 63 | ovmpoa | |
65 | 36 4 64 | syl2anc | |
66 | 12 34 65 | 3eqtrd | |