Metamath Proof Explorer


Theorem smupp1

Description: The initial element of the partial sum sequence. (Contributed by Mario Carneiro, 9-Sep-2016)

Ref Expression
Hypotheses smuval.a φA0
smuval.b φB0
smuval.p P=seq0p𝒫0,m0psaddn0|mAnmBn0ifn=0n1
smuval.n φN0
Assertion smupp1 φPN+1=PNsaddn0|NAnNB

Proof

Step Hyp Ref Expression
1 smuval.a φA0
2 smuval.b φB0
3 smuval.p P=seq0p𝒫0,m0psaddn0|mAnmBn0ifn=0n1
4 smuval.n φN0
5 nn0uz 0=0
6 4 5 eleqtrdi φN0
7 seqp1 N0seq0p𝒫0,m0psaddn0|mAnmBn0ifn=0n1N+1=seq0p𝒫0,m0psaddn0|mAnmBn0ifn=0n1Np𝒫0,m0psaddn0|mAnmBn0ifn=0n1N+1
8 6 7 syl φseq0p𝒫0,m0psaddn0|mAnmBn0ifn=0n1N+1=seq0p𝒫0,m0psaddn0|mAnmBn0ifn=0n1Np𝒫0,m0psaddn0|mAnmBn0ifn=0n1N+1
9 3 fveq1i PN+1=seq0p𝒫0,m0psaddn0|mAnmBn0ifn=0n1N+1
10 3 fveq1i PN=seq0p𝒫0,m0psaddn0|mAnmBn0ifn=0n1N
11 10 oveq1i PNp𝒫0,m0psaddn0|mAnmBn0ifn=0n1N+1=seq0p𝒫0,m0psaddn0|mAnmBn0ifn=0n1Np𝒫0,m0psaddn0|mAnmBn0ifn=0n1N+1
12 8 9 11 3eqtr4g φPN+1=PNp𝒫0,m0psaddn0|mAnmBn0ifn=0n1N+1
13 1nn0 10
14 13 a1i φ10
15 4 14 nn0addcld φN+10
16 eqeq1 n=N+1n=0N+1=0
17 oveq1 n=N+1n1=N+1-1
18 16 17 ifbieq2d n=N+1ifn=0n1=ifN+1=0N+1-1
19 eqid n0ifn=0n1=n0ifn=0n1
20 0ex V
21 ovex N+1-1V
22 20 21 ifex ifN+1=0N+1-1V
23 18 19 22 fvmpt N+10n0ifn=0n1N+1=ifN+1=0N+1-1
24 15 23 syl φn0ifn=0n1N+1=ifN+1=0N+1-1
25 nn0p1nn N0N+1
26 4 25 syl φN+1
27 26 nnne0d φN+10
28 ifnefalse N+10ifN+1=0N+1-1=N+1-1
29 27 28 syl φifN+1=0N+1-1=N+1-1
30 4 nn0cnd φN
31 14 nn0cnd φ1
32 30 31 pncand φN+1-1=N
33 24 29 32 3eqtrd φn0ifn=0n1N+1=N
34 33 oveq2d φPNp𝒫0,m0psaddn0|mAnmBn0ifn=0n1N+1=PNp𝒫0,m0psaddn0|mAnmBN
35 1 2 3 smupf φP:0𝒫0
36 35 4 ffvelcdmd φPN𝒫0
37 simpl x=PNy=Nx=PN
38 simpr x=PNy=Ny=N
39 38 eleq1d x=PNy=NyANA
40 38 oveq2d x=PNy=Nky=kN
41 40 eleq1d x=PNy=NkyBkNB
42 39 41 anbi12d x=PNy=NyAkyBNAkNB
43 42 rabbidv x=PNy=Nk0|yAkyB=k0|NAkNB
44 oveq1 k=nkN=nN
45 44 eleq1d k=nkNBnNB
46 45 anbi2d k=nNAkNBNAnNB
47 46 cbvrabv k0|NAkNB=n0|NAnNB
48 43 47 eqtrdi x=PNy=Nk0|yAkyB=n0|NAnNB
49 37 48 oveq12d x=PNy=Nxsaddk0|yAkyB=PNsaddn0|NAnNB
50 oveq1 p=xpsaddn0|mAnmB=xsaddn0|mAnmB
51 eleq1w m=ymAyA
52 oveq2 m=ynm=ny
53 52 eleq1d m=ynmBnyB
54 51 53 anbi12d m=ymAnmByAnyB
55 54 rabbidv m=yn0|mAnmB=n0|yAnyB
56 oveq1 k=nky=ny
57 56 eleq1d k=nkyBnyB
58 57 anbi2d k=nyAkyByAnyB
59 58 cbvrabv k0|yAkyB=n0|yAnyB
60 55 59 eqtr4di m=yn0|mAnmB=k0|yAkyB
61 60 oveq2d m=yxsaddn0|mAnmB=xsaddk0|yAkyB
62 50 61 cbvmpov p𝒫0,m0psaddn0|mAnmB=x𝒫0,y0xsaddk0|yAkyB
63 ovex PNsaddn0|NAnNBV
64 49 62 63 ovmpoa PN𝒫0N0PNp𝒫0,m0psaddn0|mAnmBN=PNsaddn0|NAnNB
65 36 4 64 syl2anc φPNp𝒫0,m0psaddn0|mAnmBN=PNsaddn0|NAnNB
66 12 34 65 3eqtrd φPN+1=PNsaddn0|NAnNB