Metamath Proof Explorer


Theorem soisoi

Description: Infer isomorphism from one direction of an order proof for isomorphisms between strict orders. (Contributed by Stefan O'Rear, 2-Nov-2014)

Ref Expression
Assertion soisoi ROrASPoBH:AontoBxAyAxRyHxSHyHIsomR,SAB

Proof

Step Hyp Ref Expression
1 simprl ROrASPoBH:AontoBxAyAxRyHxSHyH:AontoB
2 fof H:AontoBH:AB
3 1 2 syl ROrASPoBH:AontoBxAyAxRyHxSHyH:AB
4 sotrieq ROrAaAbAa=b¬aRbbRa
5 4 con2bid ROrAaAbAaRbbRa¬a=b
6 5 ad4ant14 ROrASPoBH:AontoBxAyAxRyHxSHyaAbAaRbbRa¬a=b
7 simprr ROrASPoBH:AontoBxAyAxRyHxSHyxAyAxRyHxSHy
8 breq1 x=axRyaRy
9 fveq2 x=aHx=Ha
10 9 breq1d x=aHxSHyHaSHy
11 8 10 imbi12d x=axRyHxSHyaRyHaSHy
12 breq2 y=baRyaRb
13 fveq2 y=bHy=Hb
14 13 breq2d y=bHaSHyHaSHb
15 12 14 imbi12d y=baRyHaSHyaRbHaSHb
16 11 15 rspc2va aAbAxAyAxRyHxSHyaRbHaSHb
17 16 ancoms xAyAxRyHxSHyaAbAaRbHaSHb
18 7 17 sylan ROrASPoBH:AontoBxAyAxRyHxSHyaAbAaRbHaSHb
19 simpllr ROrASPoBH:AontoBxAyAxRyHxSHyaAbASPoB
20 simplrl ROrASPoBH:AontoBxAyAxRyHxSHyaAbAH:AontoB
21 20 2 syl ROrASPoBH:AontoBxAyAxRyHxSHyaAbAH:AB
22 simprr ROrASPoBH:AontoBxAyAxRyHxSHyaAbAbA
23 21 22 ffvelcdmd ROrASPoBH:AontoBxAyAxRyHxSHyaAbAHbB
24 poirr SPoBHbB¬HbSHb
25 breq1 Ha=HbHaSHbHbSHb
26 25 notbid Ha=Hb¬HaSHb¬HbSHb
27 24 26 syl5ibrcom SPoBHbBHa=Hb¬HaSHb
28 19 23 27 syl2anc ROrASPoBH:AontoBxAyAxRyHxSHyaAbAHa=Hb¬HaSHb
29 28 con2d ROrASPoBH:AontoBxAyAxRyHxSHyaAbAHaSHb¬Ha=Hb
30 18 29 syld ROrASPoBH:AontoBxAyAxRyHxSHyaAbAaRb¬Ha=Hb
31 breq1 x=bxRybRy
32 fveq2 x=bHx=Hb
33 32 breq1d x=bHxSHyHbSHy
34 31 33 imbi12d x=bxRyHxSHybRyHbSHy
35 breq2 y=abRybRa
36 fveq2 y=aHy=Ha
37 36 breq2d y=aHbSHyHbSHa
38 35 37 imbi12d y=abRyHbSHybRaHbSHa
39 34 38 rspc2va bAaAxAyAxRyHxSHybRaHbSHa
40 39 ancoms xAyAxRyHxSHybAaAbRaHbSHa
41 40 ancom2s xAyAxRyHxSHyaAbAbRaHbSHa
42 7 41 sylan ROrASPoBH:AontoBxAyAxRyHxSHyaAbAbRaHbSHa
43 breq2 Ha=HbHbSHaHbSHb
44 43 notbid Ha=Hb¬HbSHa¬HbSHb
45 24 44 syl5ibrcom SPoBHbBHa=Hb¬HbSHa
46 19 23 45 syl2anc ROrASPoBH:AontoBxAyAxRyHxSHyaAbAHa=Hb¬HbSHa
47 46 con2d ROrASPoBH:AontoBxAyAxRyHxSHyaAbAHbSHa¬Ha=Hb
48 42 47 syld ROrASPoBH:AontoBxAyAxRyHxSHyaAbAbRa¬Ha=Hb
49 30 48 jaod ROrASPoBH:AontoBxAyAxRyHxSHyaAbAaRbbRa¬Ha=Hb
50 6 49 sylbird ROrASPoBH:AontoBxAyAxRyHxSHyaAbA¬a=b¬Ha=Hb
51 50 con4d ROrASPoBH:AontoBxAyAxRyHxSHyaAbAHa=Hba=b
52 51 ralrimivva ROrASPoBH:AontoBxAyAxRyHxSHyaAbAHa=Hba=b
53 dff13 H:A1-1BH:ABaAbAHa=Hba=b
54 3 52 53 sylanbrc ROrASPoBH:AontoBxAyAxRyHxSHyH:A1-1B
55 df-f1o H:A1-1 ontoBH:A1-1BH:AontoB
56 54 1 55 sylanbrc ROrASPoBH:AontoBxAyAxRyHxSHyH:A1-1 ontoB
57 sotric ROrAaAbAaRb¬a=bbRa
58 57 con2bid ROrAaAbAa=bbRa¬aRb
59 58 ad4ant14 ROrASPoBH:AontoBxAyAxRyHxSHyaAbAa=bbRa¬aRb
60 fveq2 a=bHa=Hb
61 60 breq1d a=bHaSHbHbSHb
62 61 notbid a=b¬HaSHb¬HbSHb
63 24 62 syl5ibrcom SPoBHbBa=b¬HaSHb
64 19 23 63 syl2anc ROrASPoBH:AontoBxAyAxRyHxSHyaAbAa=b¬HaSHb
65 simprl ROrASPoBH:AontoBxAyAxRyHxSHyaAbAaA
66 21 65 ffvelcdmd ROrASPoBH:AontoBxAyAxRyHxSHyaAbAHaB
67 po2nr SPoBHbBHaB¬HbSHaHaSHb
68 imnan HbSHa¬HaSHb¬HbSHaHaSHb
69 67 68 sylibr SPoBHbBHaBHbSHa¬HaSHb
70 19 23 66 69 syl12anc ROrASPoBH:AontoBxAyAxRyHxSHyaAbAHbSHa¬HaSHb
71 42 70 syld ROrASPoBH:AontoBxAyAxRyHxSHyaAbAbRa¬HaSHb
72 64 71 jaod ROrASPoBH:AontoBxAyAxRyHxSHyaAbAa=bbRa¬HaSHb
73 59 72 sylbird ROrASPoBH:AontoBxAyAxRyHxSHyaAbA¬aRb¬HaSHb
74 18 73 impcon4bid ROrASPoBH:AontoBxAyAxRyHxSHyaAbAaRbHaSHb
75 74 ralrimivva ROrASPoBH:AontoBxAyAxRyHxSHyaAbAaRbHaSHb
76 df-isom HIsomR,SABH:A1-1 ontoBaAbAaRbHaSHb
77 56 75 76 sylanbrc ROrASPoBH:AontoBxAyAxRyHxSHyHIsomR,SAB