Metamath Proof Explorer


Theorem sraassaOLD

Description: Obsolete version of sraassa as of 21-Mar-2025. (Contributed by Mario Carneiro, 6-Oct-2015) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypothesis sraassa.a A=subringAlgWS
Assertion sraassaOLD WCRingSSubRingWAAssAlg

Proof

Step Hyp Ref Expression
1 sraassa.a A=subringAlgWS
2 1 a1i WCRingSSubRingWA=subringAlgWS
3 eqid BaseW=BaseW
4 3 subrgss SSubRingWSBaseW
5 4 adantl WCRingSSubRingWSBaseW
6 2 5 srabase WCRingSSubRingWBaseW=BaseA
7 2 5 srasca WCRingSSubRingWW𝑠S=ScalarA
8 eqid W𝑠S=W𝑠S
9 8 subrgbas SSubRingWS=BaseW𝑠S
10 9 adantl WCRingSSubRingWS=BaseW𝑠S
11 2 5 sravsca WCRingSSubRingWW=A
12 2 5 sramulr WCRingSSubRingWW=A
13 1 sralmod SSubRingWALMod
14 13 adantl WCRingSSubRingWALMod
15 crngring WCRingWRing
16 15 adantr WCRingSSubRingWWRing
17 eqidd WCRingSSubRingWBaseW=BaseW
18 2 5 sraaddg WCRingSSubRingW+W=+A
19 18 oveqdr WCRingSSubRingWxBaseWyBaseWx+Wy=x+Ay
20 12 oveqdr WCRingSSubRingWxBaseWyBaseWxWy=xAy
21 17 6 19 20 ringpropd WCRingSSubRingWWRingARing
22 16 21 mpbid WCRingSSubRingWARing
23 16 adantr WCRingSSubRingWxSyBaseWzBaseWWRing
24 5 adantr WCRingSSubRingWxSyBaseWzBaseWSBaseW
25 simpr1 WCRingSSubRingWxSyBaseWzBaseWxS
26 24 25 sseldd WCRingSSubRingWxSyBaseWzBaseWxBaseW
27 simpr2 WCRingSSubRingWxSyBaseWzBaseWyBaseW
28 simpr3 WCRingSSubRingWxSyBaseWzBaseWzBaseW
29 eqid W=W
30 3 29 ringass WRingxBaseWyBaseWzBaseWxWyWz=xWyWz
31 23 26 27 28 30 syl13anc WCRingSSubRingWxSyBaseWzBaseWxWyWz=xWyWz
32 eqid mulGrpW=mulGrpW
33 32 crngmgp WCRingmulGrpWCMnd
34 33 ad2antrr WCRingSSubRingWxSyBaseWzBaseWmulGrpWCMnd
35 32 3 mgpbas BaseW=BasemulGrpW
36 32 29 mgpplusg W=+mulGrpW
37 35 36 cmn12 mulGrpWCMndyBaseWxBaseWzBaseWyWxWz=xWyWz
38 34 27 26 28 37 syl13anc WCRingSSubRingWxSyBaseWzBaseWyWxWz=xWyWz
39 6 7 10 11 12 14 22 31 38 isassad WCRingSSubRingWAAssAlg