Description: An analogue of pwex for the subcategory subset relation: The collection of subcategory subsets of a given set J is a set. (Contributed by Mario Carneiro, 6-Jan-2017)
Ref | Expression | ||
---|---|---|---|
Assertion | sscpwex | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ovex | |
|
2 | brssc | |
|
3 | simpl | |
|
4 | vex | |
|
5 | 4 4 | xpex | |
6 | fnex | |
|
7 | 3 5 6 | sylancl | |
8 | rnexg | |
|
9 | uniexg | |
|
10 | pwexg | |
|
11 | 7 8 9 10 | 4syl | |
12 | fndm | |
|
13 | 12 | adantr | |
14 | 13 5 | eqeltrdi | |
15 | ss2ixp | |
|
16 | fvssunirn | |
|
17 | 16 | sspwi | |
18 | 17 | a1i | |
19 | 15 18 | mprg | |
20 | simprr | |
|
21 | 19 20 | sselid | |
22 | vex | |
|
23 | 22 | elixpconst | |
24 | 21 23 | sylib | |
25 | elpwi | |
|
26 | 25 | ad2antrl | |
27 | xpss12 | |
|
28 | 26 26 27 | syl2anc | |
29 | 28 13 | sseqtrrd | |
30 | elpm2r | |
|
31 | 11 14 24 29 30 | syl22anc | |
32 | 31 | rexlimdvaa | |
33 | 32 | imp | |
34 | 33 | exlimiv | |
35 | 2 34 | sylbi | |
36 | 35 | abssi | |
37 | 1 36 | ssexi | |