Metamath Proof Explorer


Theorem sscpwex

Description: An analogue of pwex for the subcategory subset relation: The collection of subcategory subsets of a given set J is a set. (Contributed by Mario Carneiro, 6-Jan-2017)

Ref Expression
Assertion sscpwex h|hcatJV

Proof

Step Hyp Ref Expression
1 ovex 𝒫ranJ𝑝𝑚domJV
2 brssc hcatJtJFnt×ts𝒫thxs×s𝒫Jx
3 simpl JFnt×ts𝒫thxs×s𝒫JxJFnt×t
4 vex tV
5 4 4 xpex t×tV
6 fnex JFnt×tt×tVJV
7 3 5 6 sylancl JFnt×ts𝒫thxs×s𝒫JxJV
8 rnexg JVranJV
9 uniexg ranJVranJV
10 pwexg ranJV𝒫ranJV
11 7 8 9 10 4syl JFnt×ts𝒫thxs×s𝒫Jx𝒫ranJV
12 fndm JFnt×tdomJ=t×t
13 12 adantr JFnt×ts𝒫thxs×s𝒫JxdomJ=t×t
14 13 5 eqeltrdi JFnt×ts𝒫thxs×s𝒫JxdomJV
15 ss2ixp xs×s𝒫Jx𝒫ranJxs×s𝒫Jxxs×s𝒫ranJ
16 fvssunirn JxranJ
17 16 sspwi 𝒫Jx𝒫ranJ
18 17 a1i xs×s𝒫Jx𝒫ranJ
19 15 18 mprg xs×s𝒫Jxxs×s𝒫ranJ
20 simprr JFnt×ts𝒫thxs×s𝒫Jxhxs×s𝒫Jx
21 19 20 sselid JFnt×ts𝒫thxs×s𝒫Jxhxs×s𝒫ranJ
22 vex hV
23 22 elixpconst hxs×s𝒫ranJh:s×s𝒫ranJ
24 21 23 sylib JFnt×ts𝒫thxs×s𝒫Jxh:s×s𝒫ranJ
25 elpwi s𝒫tst
26 25 ad2antrl JFnt×ts𝒫thxs×s𝒫Jxst
27 xpss12 ststs×st×t
28 26 26 27 syl2anc JFnt×ts𝒫thxs×s𝒫Jxs×st×t
29 28 13 sseqtrrd JFnt×ts𝒫thxs×s𝒫Jxs×sdomJ
30 elpm2r 𝒫ranJVdomJVh:s×s𝒫ranJs×sdomJh𝒫ranJ𝑝𝑚domJ
31 11 14 24 29 30 syl22anc JFnt×ts𝒫thxs×s𝒫Jxh𝒫ranJ𝑝𝑚domJ
32 31 rexlimdvaa JFnt×ts𝒫thxs×s𝒫Jxh𝒫ranJ𝑝𝑚domJ
33 32 imp JFnt×ts𝒫thxs×s𝒫Jxh𝒫ranJ𝑝𝑚domJ
34 33 exlimiv tJFnt×ts𝒫thxs×s𝒫Jxh𝒫ranJ𝑝𝑚domJ
35 2 34 sylbi hcatJh𝒫ranJ𝑝𝑚domJ
36 35 abssi h|hcatJ𝒫ranJ𝑝𝑚domJ
37 1 36 ssexi h|hcatJV