Metamath Proof Explorer


Theorem ssps

Description: Scalar multiplication on a subspace is a restriction of scalar multiplication on the parent space. (Contributed by NM, 28-Jan-2008) (New usage is discouraged.)

Ref Expression
Hypotheses ssps.y Y=BaseSetW
ssps.s S=𝑠OLDU
ssps.r R=𝑠OLDW
ssps.h H=SubSpU
Assertion ssps UNrmCVecWHR=S×Y

Proof

Step Hyp Ref Expression
1 ssps.y Y=BaseSetW
2 ssps.s S=𝑠OLDU
3 ssps.r R=𝑠OLDW
4 ssps.h H=SubSpU
5 eqid BaseSetU=BaseSetU
6 5 2 nvsf UNrmCVecS:×BaseSetUBaseSetU
7 6 ffund UNrmCVecFunS
8 7 funresd UNrmCVecFunS×Y
9 8 adantr UNrmCVecWHFunS×Y
10 4 sspnv UNrmCVecWHWNrmCVec
11 1 3 nvsf WNrmCVecR:×YY
12 10 11 syl UNrmCVecWHR:×YY
13 12 ffnd UNrmCVecWHRFn×Y
14 fnresdm RFn×YR×Y=R
15 13 14 syl UNrmCVecWHR×Y=R
16 eqid +vU=+vU
17 eqid +vW=+vW
18 eqid normCVU=normCVU
19 eqid normCVW=normCVW
20 16 17 2 3 18 19 4 isssp UNrmCVecWHWNrmCVec+vW+vURSnormCVWnormCVU
21 20 simplbda UNrmCVecWH+vW+vURSnormCVWnormCVU
22 21 simp2d UNrmCVecWHRS
23 ssres RSR×YS×Y
24 22 23 syl UNrmCVecWHR×YS×Y
25 15 24 eqsstrrd UNrmCVecWHRS×Y
26 9 13 25 3jca UNrmCVecWHFunS×YRFn×YRS×Y
27 oprssov FunS×YRFn×YRS×YxyYxS×Yy=xRy
28 26 27 sylan UNrmCVecWHxyYxS×Yy=xRy
29 28 eqcomd UNrmCVecWHxyYxRy=xS×Yy
30 29 ralrimivva UNrmCVecWHxyYxRy=xS×Yy
31 eqid ×Y=×Y
32 30 31 jctil UNrmCVecWH×Y=×YxyYxRy=xS×Yy
33 6 ffnd UNrmCVecSFn×BaseSetU
34 33 adantr UNrmCVecWHSFn×BaseSetU
35 ssid
36 5 1 4 sspba UNrmCVecWHYBaseSetU
37 xpss12 YBaseSetU×Y×BaseSetU
38 35 36 37 sylancr UNrmCVecWH×Y×BaseSetU
39 fnssres SFn×BaseSetU×Y×BaseSetUS×YFn×Y
40 34 38 39 syl2anc UNrmCVecWHS×YFn×Y
41 eqfnov RFn×YS×YFn×YR=S×Y×Y=×YxyYxRy=xS×Yy
42 13 40 41 syl2anc UNrmCVecWHR=S×Y×Y=×YxyYxRy=xS×Yy
43 32 42 mpbird UNrmCVecWHR=S×Y