| Step |
Hyp |
Ref |
Expression |
| 1 |
|
stirlinglem6.1 |
|
| 2 |
|
eqid |
|
| 3 |
|
eqid |
|
| 4 |
|
eqid |
|
| 5 |
|
eqid |
|
| 6 |
|
2re |
|
| 7 |
6
|
a1i |
|
| 8 |
|
nnre |
|
| 9 |
7 8
|
remulcld |
|
| 10 |
|
0le2 |
|
| 11 |
10
|
a1i |
|
| 12 |
|
0red |
|
| 13 |
|
nngt0 |
|
| 14 |
12 8 13
|
ltled |
|
| 15 |
7 8 11 14
|
mulge0d |
|
| 16 |
9 15
|
ge0p1rpd |
|
| 17 |
16
|
rpreccld |
|
| 18 |
|
1red |
|
| 19 |
18
|
renegcld |
|
| 20 |
17
|
rpred |
|
| 21 |
|
neg1lt0 |
|
| 22 |
21
|
a1i |
|
| 23 |
17
|
rpgt0d |
|
| 24 |
19 12 20 22 23
|
lttrd |
|
| 25 |
|
1rp |
|
| 26 |
25
|
a1i |
|
| 27 |
|
1cnd |
|
| 28 |
27
|
div1d |
|
| 29 |
|
2rp |
|
| 30 |
29
|
a1i |
|
| 31 |
|
nnrp |
|
| 32 |
30 31
|
rpmulcld |
|
| 33 |
18 32
|
ltaddrp2d |
|
| 34 |
28 33
|
eqbrtrd |
|
| 35 |
26 16 34
|
ltrec1d |
|
| 36 |
20 18
|
absltd |
|
| 37 |
24 35 36
|
mpbir2and |
|
| 38 |
2 3 4 1 5 17 37
|
stirlinglem5 |
|
| 39 |
|
2cnd |
|
| 40 |
|
nncn |
|
| 41 |
39 40
|
mulcld |
|
| 42 |
41 27
|
addcld |
|
| 43 |
9 18
|
readdcld |
|
| 44 |
|
2pos |
|
| 45 |
44
|
a1i |
|
| 46 |
7 8 45 13
|
mulgt0d |
|
| 47 |
9
|
ltp1d |
|
| 48 |
12 9 43 46 47
|
lttrd |
|
| 49 |
48
|
gt0ne0d |
|
| 50 |
42 49
|
dividd |
|
| 51 |
50
|
eqcomd |
|
| 52 |
51
|
oveq1d |
|
| 53 |
51
|
oveq1d |
|
| 54 |
52 53
|
oveq12d |
|
| 55 |
42 27 42 49
|
divdird |
|
| 56 |
55
|
eqcomd |
|
| 57 |
42 27 42 49
|
divsubdird |
|
| 58 |
57
|
eqcomd |
|
| 59 |
56 58
|
oveq12d |
|
| 60 |
41 27 27
|
addassd |
|
| 61 |
|
1p1e2 |
|
| 62 |
61
|
a1i |
|
| 63 |
62
|
oveq2d |
|
| 64 |
39
|
mulridd |
|
| 65 |
64
|
eqcomd |
|
| 66 |
65
|
oveq2d |
|
| 67 |
39 40 27
|
adddid |
|
| 68 |
66 67
|
eqtr4d |
|
| 69 |
60 63 68
|
3eqtrd |
|
| 70 |
69
|
oveq1d |
|
| 71 |
41 27
|
pncand |
|
| 72 |
71
|
oveq1d |
|
| 73 |
70 72
|
oveq12d |
|
| 74 |
59 73
|
eqtrd |
|
| 75 |
40 27
|
addcld |
|
| 76 |
39 75
|
mulcld |
|
| 77 |
46
|
gt0ne0d |
|
| 78 |
76 41 42 77 49
|
divcan7d |
|
| 79 |
45
|
gt0ne0d |
|
| 80 |
13
|
gt0ne0d |
|
| 81 |
39 39 75 40 79 80
|
divmuldivd |
|
| 82 |
81
|
eqcomd |
|
| 83 |
39 79
|
dividd |
|
| 84 |
83
|
oveq1d |
|
| 85 |
75 40 80
|
divcld |
|
| 86 |
85
|
mullidd |
|
| 87 |
84 86
|
eqtrd |
|
| 88 |
78 82 87
|
3eqtrd |
|
| 89 |
54 74 88
|
3eqtrd |
|
| 90 |
89
|
fveq2d |
|
| 91 |
38 90
|
breqtrd |
|