Metamath Proof Explorer


Theorem stoweidlem15

Description: This lemma is used to prove the existence of a function p as in Lemma 1 from BrosowskiDeutsh p. 90: p is in the subalgebra, such that 0 ≤ p ≤ 1, p__(t_0) = 0, and p > 0 on T - U. Here ( GI ) is used to represent p__(t_i) in the paper. (Contributed by Glauco Siliprandi, 20-Apr-2017)

Ref Expression
Hypotheses stoweidlem15.1 Q = h A | h Z = 0 t T 0 h t h t 1
stoweidlem15.3 φ G : 1 M Q
stoweidlem15.4 φ f A f : T
Assertion stoweidlem15 φ I 1 M S T G I S 0 G I S G I S 1

Proof

Step Hyp Ref Expression
1 stoweidlem15.1 Q = h A | h Z = 0 t T 0 h t h t 1
2 stoweidlem15.3 φ G : 1 M Q
3 stoweidlem15.4 φ f A f : T
4 simpl φ I 1 M φ
5 2 ffvelrnda φ I 1 M G I Q
6 elrabi G I h A | h Z = 0 t T 0 h t h t 1 G I A
7 6 1 eleq2s G I Q G I A
8 5 7 syl φ I 1 M G I A
9 eleq1 f = G I f A G I A
10 9 anbi2d f = G I φ f A φ G I A
11 feq1 f = G I f : T G I : T
12 10 11 imbi12d f = G I φ f A f : T φ G I A G I : T
13 12 3 vtoclg G I A φ G I A G I : T
14 8 13 syl φ I 1 M φ G I A G I : T
15 4 8 14 mp2and φ I 1 M G I : T
16 15 ffvelrnda φ I 1 M S T G I S
17 5 1 eleqtrdi φ I 1 M G I h A | h Z = 0 t T 0 h t h t 1
18 fveq1 h = G I h Z = G I Z
19 18 eqeq1d h = G I h Z = 0 G I Z = 0
20 fveq1 h = G I h t = G I t
21 20 breq2d h = G I 0 h t 0 G I t
22 20 breq1d h = G I h t 1 G I t 1
23 21 22 anbi12d h = G I 0 h t h t 1 0 G I t G I t 1
24 23 ralbidv h = G I t T 0 h t h t 1 t T 0 G I t G I t 1
25 19 24 anbi12d h = G I h Z = 0 t T 0 h t h t 1 G I Z = 0 t T 0 G I t G I t 1
26 25 elrab G I h A | h Z = 0 t T 0 h t h t 1 G I A G I Z = 0 t T 0 G I t G I t 1
27 17 26 sylib φ I 1 M G I A G I Z = 0 t T 0 G I t G I t 1
28 27 simprd φ I 1 M G I Z = 0 t T 0 G I t G I t 1
29 28 simprd φ I 1 M t T 0 G I t G I t 1
30 fveq2 s = t G I s = G I t
31 30 breq2d s = t 0 G I s 0 G I t
32 30 breq1d s = t G I s 1 G I t 1
33 31 32 anbi12d s = t 0 G I s G I s 1 0 G I t G I t 1
34 33 cbvralvw s T 0 G I s G I s 1 t T 0 G I t G I t 1
35 fveq2 s = S G I s = G I S
36 35 breq2d s = S 0 G I s 0 G I S
37 35 breq1d s = S G I s 1 G I S 1
38 36 37 anbi12d s = S 0 G I s G I s 1 0 G I S G I S 1
39 38 rspccva s T 0 G I s G I s 1 S T 0 G I S G I S 1
40 34 39 sylanbr t T 0 G I t G I t 1 S T 0 G I S G I S 1
41 29 40 sylan φ I 1 M S T 0 G I S G I S 1
42 41 simpld φ I 1 M S T 0 G I S
43 41 simprd φ I 1 M S T G I S 1
44 16 42 43 3jca φ I 1 M S T G I S 0 G I S G I S 1