Metamath Proof Explorer


Theorem stoweidlem38

Description: This lemma is used to prove the existence of a function p as in Lemma 1 of BrosowskiDeutsh p. 90: p is in the subalgebra, such that 0 <= p <= 1, p__(t_0) = 0, and p > 0 on T - U. Z is used for t_0, P is used for p, ( Gi ) is used for p__(t_i). (Contributed by Glauco Siliprandi, 20-Apr-2017)

Ref Expression
Hypotheses stoweidlem38.1 Q=hA|hZ=0tT0htht1
stoweidlem38.2 P=tT1Mi=1MGit
stoweidlem38.3 φM
stoweidlem38.4 φG:1MQ
stoweidlem38.5 φfAf:T
Assertion stoweidlem38 φST0PSPS1

Proof

Step Hyp Ref Expression
1 stoweidlem38.1 Q=hA|hZ=0tT0htht1
2 stoweidlem38.2 P=tT1Mi=1MGit
3 stoweidlem38.3 φM
4 stoweidlem38.4 φG:1MQ
5 stoweidlem38.5 φfAf:T
6 3 nnrecred φ1M
7 6 adantr φST1M
8 fzfid φST1MFin
9 1 4 5 stoweidlem15 φi1MSTGiS0GiSGiS1
10 9 simp1d φi1MSTGiS
11 10 an32s φSTi1MGiS
12 8 11 fsumrecl φSTi=1MGiS
13 1red φ1
14 0le1 01
15 14 a1i φ01
16 3 nnred φM
17 3 nngt0d φ0<M
18 divge0 101M0<M01M
19 13 15 16 17 18 syl22anc φ01M
20 19 adantr φST01M
21 9 simp2d φi1MST0GiS
22 21 an32s φSTi1M0GiS
23 8 11 22 fsumge0 φST0i=1MGiS
24 7 12 20 23 mulge0d φST01Mi=1MGiS
25 1 2 3 4 5 stoweidlem30 φSTPS=1Mi=1MGiS
26 24 25 breqtrrd φST0PS
27 1red φSTi1M1
28 9 simp3d φi1MSTGiS1
29 28 an32s φSTi1MGiS1
30 8 11 27 29 fsumle φSTi=1MGiSi=1M1
31 fzfid φ1MFin
32 ax-1cn 1
33 fsumconst 1MFin1i=1M1=1M1
34 31 32 33 sylancl φi=1M1=1M1
35 3 nnnn0d φM0
36 hashfz1 M01M=M
37 35 36 syl φ1M=M
38 37 oveq1d φ1M1= M1
39 3 nncnd φM
40 39 mulridd φ M1=M
41 34 38 40 3eqtrd φi=1M1=M
42 41 adantr φSTi=1M1=M
43 30 42 breqtrd φSTi=1MGiSM
44 16 adantr φSTM
45 1red φST1
46 0lt1 0<1
47 46 a1i φST0<1
48 16 17 jca φM0<M
49 48 adantr φSTM0<M
50 divgt0 10<1M0<M0<1M
51 45 47 49 50 syl21anc φST0<1M
52 lemul2 i=1MGiSM1M0<1Mi=1MGiSM1Mi=1MGiS1M M
53 12 44 7 51 52 syl112anc φSTi=1MGiSM1Mi=1MGiS1M M
54 43 53 mpbid φST1Mi=1MGiS1M M
55 25 54 eqbrtrd φSTPS1M M
56 32 a1i φ1
57 3 nnne0d φM0
58 56 39 57 3jca φ1MM0
59 58 adantr φST1MM0
60 divcan1 1MM01M M=1
61 59 60 syl φST1M M=1
62 55 61 breqtrd φSTPS1
63 26 62 jca φST0PSPS1