Description: This lemma is used to prove the existence of a function p as in Lemma 1 of BrosowskiDeutsh p. 90: p is in the subalgebra, such that 0 <= p <= 1, p__(t_0) = 0, and p > 0 on T - U. Z is used for t_0, P is used for p, ( Gi ) is used for p__(t_i). (Contributed by Glauco Siliprandi, 20-Apr-2017)
Ref | Expression | ||
---|---|---|---|
Hypotheses | stoweidlem38.1 | |
|
stoweidlem38.2 | |
||
stoweidlem38.3 | |
||
stoweidlem38.4 | |
||
stoweidlem38.5 | |
||
Assertion | stoweidlem38 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | stoweidlem38.1 | |
|
2 | stoweidlem38.2 | |
|
3 | stoweidlem38.3 | |
|
4 | stoweidlem38.4 | |
|
5 | stoweidlem38.5 | |
|
6 | 3 | nnrecred | |
7 | 6 | adantr | |
8 | fzfid | |
|
9 | 1 4 5 | stoweidlem15 | |
10 | 9 | simp1d | |
11 | 10 | an32s | |
12 | 8 11 | fsumrecl | |
13 | 1red | |
|
14 | 0le1 | |
|
15 | 14 | a1i | |
16 | 3 | nnred | |
17 | 3 | nngt0d | |
18 | divge0 | |
|
19 | 13 15 16 17 18 | syl22anc | |
20 | 19 | adantr | |
21 | 9 | simp2d | |
22 | 21 | an32s | |
23 | 8 11 22 | fsumge0 | |
24 | 7 12 20 23 | mulge0d | |
25 | 1 2 3 4 5 | stoweidlem30 | |
26 | 24 25 | breqtrrd | |
27 | 1red | |
|
28 | 9 | simp3d | |
29 | 28 | an32s | |
30 | 8 11 27 29 | fsumle | |
31 | fzfid | |
|
32 | ax-1cn | |
|
33 | fsumconst | |
|
34 | 31 32 33 | sylancl | |
35 | 3 | nnnn0d | |
36 | hashfz1 | |
|
37 | 35 36 | syl | |
38 | 37 | oveq1d | |
39 | 3 | nncnd | |
40 | 39 | mulridd | |
41 | 34 38 40 | 3eqtrd | |
42 | 41 | adantr | |
43 | 30 42 | breqtrd | |
44 | 16 | adantr | |
45 | 1red | |
|
46 | 0lt1 | |
|
47 | 46 | a1i | |
48 | 16 17 | jca | |
49 | 48 | adantr | |
50 | divgt0 | |
|
51 | 45 47 49 50 | syl21anc | |
52 | lemul2 | |
|
53 | 12 44 7 51 52 | syl112anc | |
54 | 43 53 | mpbid | |
55 | 25 54 | eqbrtrd | |
56 | 32 | a1i | |
57 | 3 | nnne0d | |
58 | 56 39 57 | 3jca | |
59 | 58 | adantr | |
60 | divcan1 | |
|
61 | 59 60 | syl | |
62 | 55 61 | breqtrd | |
63 | 26 62 | jca | |