Metamath Proof Explorer


Theorem subbascn

Description: The continuity predicate when the range is given by a subbasis for a topology. (Contributed by Mario Carneiro, 7-Feb-2015) (Revised by Mario Carneiro, 22-Aug-2015)

Ref Expression
Hypotheses subbascn.1 φJTopOnX
subbascn.2 φBV
subbascn.3 φK=topGenfiB
subbascn.4 φKTopOnY
Assertion subbascn φFJCnKF:XYyBF-1yJ

Proof

Step Hyp Ref Expression
1 subbascn.1 φJTopOnX
2 subbascn.2 φBV
3 subbascn.3 φK=topGenfiB
4 subbascn.4 φKTopOnY
5 1 3 4 tgcn φFJCnKF:XYyfiBF-1yJ
6 2 adantr φF:XYBV
7 ssfii BVBfiB
8 ssralv BfiByfiBF-1yJyBF-1yJ
9 6 7 8 3syl φF:XYyfiBF-1yJyBF-1yJ
10 vex xV
11 elfi xVBVxfiBz𝒫BFinx=z
12 10 6 11 sylancr φF:XYxfiBz𝒫BFinx=z
13 simpr2 φF:XYz𝒫BFinx=zyBF-1yJx=z
14 13 imaeq2d φF:XYz𝒫BFinx=zyBF-1yJF-1x=F-1z
15 ffun F:XYFunF
16 15 ad2antlr φF:XYz𝒫BFinx=zyBF-1yJFunF
17 13 10 eqeltrrdi φF:XYz𝒫BFinx=zyBF-1yJzV
18 intex zzV
19 17 18 sylibr φF:XYz𝒫BFinx=zyBF-1yJz
20 intpreima FunFzF-1z=yzF-1y
21 16 19 20 syl2anc φF:XYz𝒫BFinx=zyBF-1yJF-1z=yzF-1y
22 14 21 eqtrd φF:XYz𝒫BFinx=zyBF-1yJF-1x=yzF-1y
23 topontop JTopOnXJTop
24 1 23 syl φJTop
25 24 ad2antrr φF:XYz𝒫BFinx=zyBF-1yJJTop
26 simpr1 φF:XYz𝒫BFinx=zyBF-1yJz𝒫BFin
27 26 elin2d φF:XYz𝒫BFinx=zyBF-1yJzFin
28 26 elin1d φF:XYz𝒫BFinx=zyBF-1yJz𝒫B
29 28 elpwid φF:XYz𝒫BFinx=zyBF-1yJzB
30 simpr3 φF:XYz𝒫BFinx=zyBF-1yJyBF-1yJ
31 ssralv zByBF-1yJyzF-1yJ
32 29 30 31 sylc φF:XYz𝒫BFinx=zyBF-1yJyzF-1yJ
33 iinopn JTopzFinzyzF-1yJyzF-1yJ
34 25 27 19 32 33 syl13anc φF:XYz𝒫BFinx=zyBF-1yJyzF-1yJ
35 22 34 eqeltrd φF:XYz𝒫BFinx=zyBF-1yJF-1xJ
36 35 3exp2 φF:XYz𝒫BFinx=zyBF-1yJF-1xJ
37 36 rexlimdv φF:XYz𝒫BFinx=zyBF-1yJF-1xJ
38 12 37 sylbid φF:XYxfiByBF-1yJF-1xJ
39 38 com23 φF:XYyBF-1yJxfiBF-1xJ
40 39 ralrimdv φF:XYyBF-1yJxfiBF-1xJ
41 imaeq2 y=xF-1y=F-1x
42 41 eleq1d y=xF-1yJF-1xJ
43 42 cbvralvw yfiBF-1yJxfiBF-1xJ
44 40 43 syl6ibr φF:XYyBF-1yJyfiBF-1yJ
45 9 44 impbid φF:XYyfiBF-1yJyBF-1yJ
46 45 pm5.32da φF:XYyfiBF-1yJF:XYyBF-1yJ
47 5 46 bitrd φFJCnKF:XYyBF-1yJ