Metamath Proof Explorer


Theorem submarchi

Description: A submonoid is archimedean. (Contributed by Thierry Arnoux, 16-Sep-2018)

Ref Expression
Assertion submarchi WTosetWArchiASubMndWW𝑠AArchi

Proof

Step Hyp Ref Expression
1 submrcl ASubMndWWMnd
2 eqid BaseW=BaseW
3 eqid 0W=0W
4 eqid W=W
5 eqid W=W
6 eqid <W=<W
7 2 3 4 5 6 isarchi2 WTosetWMndWArchixBaseWyBaseW0W<WxnyWnWx
8 1 7 sylan2 WTosetASubMndWWArchixBaseWyBaseW0W<WxnyWnWx
9 8 biimpa WTosetASubMndWWArchixBaseWyBaseW0W<WxnyWnWx
10 9 an32s WTosetWArchiASubMndWxBaseWyBaseW0W<WxnyWnWx
11 eqid W𝑠A=W𝑠A
12 11 submbas ASubMndWA=BaseW𝑠A
13 2 submss ASubMndWABaseW
14 12 13 eqsstrrd ASubMndWBaseW𝑠ABaseW
15 ssralv BaseW𝑠ABaseWyBaseW0W<WxnyWnWxyBaseW𝑠A0W<WxnyWnWx
16 15 ralimdv BaseW𝑠ABaseWxBaseWyBaseW0W<WxnyWnWxxBaseWyBaseW𝑠A0W<WxnyWnWx
17 ssralv BaseW𝑠ABaseWxBaseWyBaseW𝑠A0W<WxnyWnWxxBaseW𝑠AyBaseW𝑠A0W<WxnyWnWx
18 16 17 syld BaseW𝑠ABaseWxBaseWyBaseW0W<WxnyWnWxxBaseW𝑠AyBaseW𝑠A0W<WxnyWnWx
19 14 18 syl ASubMndWxBaseWyBaseW0W<WxnyWnWxxBaseW𝑠AyBaseW𝑠A0W<WxnyWnWx
20 19 adantl WTosetWArchiASubMndWxBaseWyBaseW0W<WxnyWnWxxBaseW𝑠AyBaseW𝑠A0W<WxnyWnWx
21 11 3 subm0 ASubMndW0W=0W𝑠A
22 21 ad2antrr ASubMndWxBaseW𝑠AyBaseW𝑠A0W=0W𝑠A
23 11 5 ressle ASubMndWW=W𝑠A
24 23 difeq1d ASubMndWWI=W𝑠AI
25 5 6 pltfval WMnd<W=WI
26 1 25 syl ASubMndW<W=WI
27 11 submmnd ASubMndWW𝑠AMnd
28 eqid W𝑠A=W𝑠A
29 eqid <W𝑠A=<W𝑠A
30 28 29 pltfval W𝑠AMnd<W𝑠A=W𝑠AI
31 27 30 syl ASubMndW<W𝑠A=W𝑠AI
32 24 26 31 3eqtr4d ASubMndW<W=<W𝑠A
33 32 ad2antrr ASubMndWxBaseW𝑠AyBaseW𝑠A<W=<W𝑠A
34 eqidd ASubMndWxBaseW𝑠AyBaseW𝑠Ax=x
35 22 33 34 breq123d ASubMndWxBaseW𝑠AyBaseW𝑠A0W<Wx0W𝑠A<W𝑠Ax
36 eqidd ASubMndWxBaseW𝑠AyBaseW𝑠Any=y
37 23 ad3antrrr ASubMndWxBaseW𝑠AyBaseW𝑠AnW=W𝑠A
38 simplll ASubMndWxBaseW𝑠AyBaseW𝑠AnASubMndW
39 simpr ASubMndWxBaseW𝑠AyBaseW𝑠Ann
40 39 nnnn0d ASubMndWxBaseW𝑠AyBaseW𝑠Ann0
41 simpllr ASubMndWxBaseW𝑠AyBaseW𝑠AnxBaseW𝑠A
42 38 12 syl ASubMndWxBaseW𝑠AyBaseW𝑠AnA=BaseW𝑠A
43 41 42 eleqtrrd ASubMndWxBaseW𝑠AyBaseW𝑠AnxA
44 eqid W𝑠A=W𝑠A
45 4 11 44 submmulg ASubMndWn0xAnWx=nW𝑠Ax
46 38 40 43 45 syl3anc ASubMndWxBaseW𝑠AyBaseW𝑠AnnWx=nW𝑠Ax
47 36 37 46 breq123d ASubMndWxBaseW𝑠AyBaseW𝑠AnyWnWxyW𝑠AnW𝑠Ax
48 47 rexbidva ASubMndWxBaseW𝑠AyBaseW𝑠AnyWnWxnyW𝑠AnW𝑠Ax
49 35 48 imbi12d ASubMndWxBaseW𝑠AyBaseW𝑠A0W<WxnyWnWx0W𝑠A<W𝑠AxnyW𝑠AnW𝑠Ax
50 49 ralbidva ASubMndWxBaseW𝑠AyBaseW𝑠A0W<WxnyWnWxyBaseW𝑠A0W𝑠A<W𝑠AxnyW𝑠AnW𝑠Ax
51 50 ralbidva ASubMndWxBaseW𝑠AyBaseW𝑠A0W<WxnyWnWxxBaseW𝑠AyBaseW𝑠A0W𝑠A<W𝑠AxnyW𝑠AnW𝑠Ax
52 51 adantl WTosetWArchiASubMndWxBaseW𝑠AyBaseW𝑠A0W<WxnyWnWxxBaseW𝑠AyBaseW𝑠A0W𝑠A<W𝑠AxnyW𝑠AnW𝑠Ax
53 20 52 sylibd WTosetWArchiASubMndWxBaseWyBaseW0W<WxnyWnWxxBaseW𝑠AyBaseW𝑠A0W𝑠A<W𝑠AxnyW𝑠AnW𝑠Ax
54 10 53 mpd WTosetWArchiASubMndWxBaseW𝑠AyBaseW𝑠A0W𝑠A<W𝑠AxnyW𝑠AnW𝑠Ax
55 resstos WTosetASubMndWW𝑠AToset
56 27 adantl WTosetASubMndWW𝑠AMnd
57 eqid BaseW𝑠A=BaseW𝑠A
58 eqid 0W𝑠A=0W𝑠A
59 57 58 44 28 29 isarchi2 W𝑠ATosetW𝑠AMndW𝑠AArchixBaseW𝑠AyBaseW𝑠A0W𝑠A<W𝑠AxnyW𝑠AnW𝑠Ax
60 55 56 59 syl2anc WTosetASubMndWW𝑠AArchixBaseW𝑠AyBaseW𝑠A0W𝑠A<W𝑠AxnyW𝑠AnW𝑠Ax
61 60 adantlr WTosetWArchiASubMndWW𝑠AArchixBaseW𝑠AyBaseW𝑠A0W𝑠A<W𝑠AxnyW𝑠AnW𝑠Ax
62 54 61 mpbird WTosetWArchiASubMndWW𝑠AArchi