Description: A submonoid is archimedean. (Contributed by Thierry Arnoux, 16-Sep-2018)
Ref | Expression | ||
---|---|---|---|
Assertion | submarchi | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | submrcl | |
|
2 | eqid | |
|
3 | eqid | |
|
4 | eqid | |
|
5 | eqid | |
|
6 | eqid | |
|
7 | 2 3 4 5 6 | isarchi2 | |
8 | 1 7 | sylan2 | |
9 | 8 | biimpa | |
10 | 9 | an32s | |
11 | eqid | |
|
12 | 11 | submbas | |
13 | 2 | submss | |
14 | 12 13 | eqsstrrd | |
15 | ssralv | |
|
16 | 15 | ralimdv | |
17 | ssralv | |
|
18 | 16 17 | syld | |
19 | 14 18 | syl | |
20 | 19 | adantl | |
21 | 11 3 | subm0 | |
22 | 21 | ad2antrr | |
23 | 11 5 | ressle | |
24 | 23 | difeq1d | |
25 | 5 6 | pltfval | |
26 | 1 25 | syl | |
27 | 11 | submmnd | |
28 | eqid | |
|
29 | eqid | |
|
30 | 28 29 | pltfval | |
31 | 27 30 | syl | |
32 | 24 26 31 | 3eqtr4d | |
33 | 32 | ad2antrr | |
34 | eqidd | |
|
35 | 22 33 34 | breq123d | |
36 | eqidd | |
|
37 | 23 | ad3antrrr | |
38 | simplll | |
|
39 | simpr | |
|
40 | 39 | nnnn0d | |
41 | simpllr | |
|
42 | 38 12 | syl | |
43 | 41 42 | eleqtrrd | |
44 | eqid | |
|
45 | 4 11 44 | submmulg | |
46 | 38 40 43 45 | syl3anc | |
47 | 36 37 46 | breq123d | |
48 | 47 | rexbidva | |
49 | 35 48 | imbi12d | |
50 | 49 | ralbidva | |
51 | 50 | ralbidva | |
52 | 51 | adantl | |
53 | 20 52 | sylibd | |
54 | 10 53 | mpd | |
55 | resstos | |
|
56 | 27 | adantl | |
57 | eqid | |
|
58 | eqid | |
|
59 | 57 58 44 28 29 | isarchi2 | |
60 | 55 56 59 | syl2anc | |
61 | 60 | adantlr | |
62 | 54 61 | mpbird | |