Metamath Proof Explorer


Theorem subrginv

Description: A subring always has the same inversion function, for elements that are invertible. (Contributed by Mario Carneiro, 4-Dec-2014)

Ref Expression
Hypotheses subrginv.1 S=R𝑠A
subrginv.2 I=invrR
subrginv.3 U=UnitS
subrginv.4 J=invrS
Assertion subrginv ASubRingRXUIX=JX

Proof

Step Hyp Ref Expression
1 subrginv.1 S=R𝑠A
2 subrginv.2 I=invrR
3 subrginv.3 U=UnitS
4 subrginv.4 J=invrS
5 subrgrcl ASubRingRRRing
6 5 adantr ASubRingRXURRing
7 1 subrgbas ASubRingRA=BaseS
8 eqid BaseR=BaseR
9 8 subrgss ASubRingRABaseR
10 7 9 eqsstrrd ASubRingRBaseSBaseR
11 10 adantr ASubRingRXUBaseSBaseR
12 1 subrgring ASubRingRSRing
13 eqid BaseS=BaseS
14 3 4 13 ringinvcl SRingXUJXBaseS
15 12 14 sylan ASubRingRXUJXBaseS
16 11 15 sseldd ASubRingRXUJXBaseR
17 13 3 unitcl XUXBaseS
18 17 adantl ASubRingRXUXBaseS
19 11 18 sseldd ASubRingRXUXBaseR
20 eqid UnitR=UnitR
21 1 20 3 subrguss ASubRingRUUnitR
22 21 sselda ASubRingRXUXUnitR
23 20 2 8 ringinvcl RRingXUnitRIXBaseR
24 5 22 23 syl2an2r ASubRingRXUIXBaseR
25 eqid R=R
26 8 25 ringass RRingJXBaseRXBaseRIXBaseRJXRXRIX=JXRXRIX
27 6 16 19 24 26 syl13anc ASubRingRXUJXRXRIX=JXRXRIX
28 eqid S=S
29 eqid 1S=1S
30 3 4 28 29 unitlinv SRingXUJXSX=1S
31 12 30 sylan ASubRingRXUJXSX=1S
32 1 25 ressmulr ASubRingRR=S
33 32 adantr ASubRingRXUR=S
34 33 oveqd ASubRingRXUJXRX=JXSX
35 eqid 1R=1R
36 1 35 subrg1 ASubRingR1R=1S
37 36 adantr ASubRingRXU1R=1S
38 31 34 37 3eqtr4d ASubRingRXUJXRX=1R
39 38 oveq1d ASubRingRXUJXRXRIX=1RRIX
40 20 2 25 35 unitrinv RRingXUnitRXRIX=1R
41 5 22 40 syl2an2r ASubRingRXUXRIX=1R
42 41 oveq2d ASubRingRXUJXRXRIX=JXR1R
43 27 39 42 3eqtr3d ASubRingRXU1RRIX=JXR1R
44 8 25 35 ringlidm RRingIXBaseR1RRIX=IX
45 5 24 44 syl2an2r ASubRingRXU1RRIX=IX
46 8 25 35 ringridm RRingJXBaseRJXR1R=JX
47 5 16 46 syl2an2r ASubRingRXUJXR1R=JX
48 43 45 47 3eqtr3d ASubRingRXUIX=JX