| Step | Hyp | Ref | Expression | 
						
							| 1 |  | subsalsal.1 |  | 
						
							| 2 |  | subsalsal.2 |  | 
						
							| 3 |  | subsalsal.3 |  | 
						
							| 4 | 3 | ovexi |  | 
						
							| 5 | 4 | a1i |  | 
						
							| 6 | 1 | 0sald |  | 
						
							| 7 |  | 0in |  | 
						
							| 8 | 7 | eqcomi |  | 
						
							| 9 | 1 2 6 8 | elrestd |  | 
						
							| 10 | 9 3 | eleqtrrdi |  | 
						
							| 11 |  | eqid |  | 
						
							| 12 |  | id |  | 
						
							| 13 | 12 3 | eleqtrdi |  | 
						
							| 14 | 13 | adantl |  | 
						
							| 15 |  | elrest |  | 
						
							| 16 | 1 2 15 | syl2anc |  | 
						
							| 17 | 16 | adantr |  | 
						
							| 18 | 14 17 | mpbid |  | 
						
							| 19 | 1 | adantr |  | 
						
							| 20 | 19 | 3adant3 |  | 
						
							| 21 | 2 | 3ad2ant1 |  | 
						
							| 22 |  | simpr |  | 
						
							| 23 | 19 22 | saldifcld |  | 
						
							| 24 | 23 | 3adant3 |  | 
						
							| 25 |  | eqid |  | 
						
							| 26 | 20 21 24 25 | elrestd |  | 
						
							| 27 | 3 | unieqi |  | 
						
							| 28 | 27 | a1i |  | 
						
							| 29 | 1 2 | restuni3 |  | 
						
							| 30 | 28 29 | eqtrd |  | 
						
							| 31 | 30 | adantr |  | 
						
							| 32 |  | simpr |  | 
						
							| 33 | 31 32 | difeq12d |  | 
						
							| 34 |  | indifdir |  | 
						
							| 35 | 34 | eqcomi |  | 
						
							| 36 | 35 | a1i |  | 
						
							| 37 | 33 36 | eqtrd |  | 
						
							| 38 | 3 | a1i |  | 
						
							| 39 | 37 38 | eleq12d |  | 
						
							| 40 | 39 | 3adant2 |  | 
						
							| 41 | 26 40 | mpbird |  | 
						
							| 42 | 41 | 3exp |  | 
						
							| 43 | 42 | rexlimdv |  | 
						
							| 44 | 43 | adantr |  | 
						
							| 45 | 18 44 | mpd |  | 
						
							| 46 | 1 | adantr |  | 
						
							| 47 | 2 | adantr |  | 
						
							| 48 |  | simpr |  | 
						
							| 49 | 46 47 3 48 | subsaliuncl |  | 
						
							| 50 | 5 10 11 45 49 | issalnnd |  |