Step |
Hyp |
Ref |
Expression |
1 |
|
subsalsal.1 |
|
2 |
|
subsalsal.2 |
|
3 |
|
subsalsal.3 |
|
4 |
3
|
ovexi |
|
5 |
4
|
a1i |
|
6 |
1
|
0sald |
|
7 |
|
0in |
|
8 |
7
|
eqcomi |
|
9 |
1 2 6 8
|
elrestd |
|
10 |
9 3
|
eleqtrrdi |
|
11 |
|
eqid |
|
12 |
|
id |
|
13 |
12 3
|
eleqtrdi |
|
14 |
13
|
adantl |
|
15 |
|
elrest |
|
16 |
1 2 15
|
syl2anc |
|
17 |
16
|
adantr |
|
18 |
14 17
|
mpbid |
|
19 |
1
|
adantr |
|
20 |
19
|
3adant3 |
|
21 |
2
|
3ad2ant1 |
|
22 |
|
simpr |
|
23 |
19 22
|
saldifcld |
|
24 |
23
|
3adant3 |
|
25 |
|
eqid |
|
26 |
20 21 24 25
|
elrestd |
|
27 |
3
|
unieqi |
|
28 |
27
|
a1i |
|
29 |
1 2
|
restuni3 |
|
30 |
28 29
|
eqtrd |
|
31 |
30
|
adantr |
|
32 |
|
simpr |
|
33 |
31 32
|
difeq12d |
|
34 |
|
indifdir |
|
35 |
34
|
eqcomi |
|
36 |
35
|
a1i |
|
37 |
33 36
|
eqtrd |
|
38 |
3
|
a1i |
|
39 |
37 38
|
eleq12d |
|
40 |
39
|
3adant2 |
|
41 |
26 40
|
mpbird |
|
42 |
41
|
3exp |
|
43 |
42
|
rexlimdv |
|
44 |
43
|
adantr |
|
45 |
18 44
|
mpd |
|
46 |
1
|
adantr |
|
47 |
2
|
adantr |
|
48 |
|
simpr |
|
49 |
46 47 3 48
|
subsaliuncl |
|
50 |
5 10 11 45 49
|
issalnnd |
|