Metamath Proof Explorer


Theorem sucdom2OLD

Description: Obsolete version of sucdom2 as of 4-Dec-2024. (Contributed by Mario Carneiro, 12-Jan-2013) (Proof shortened by Mario Carneiro, 27-Apr-2015) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion sucdom2OLD ABsucAB

Proof

Step Hyp Ref Expression
1 sdomdom ABAB
2 brdomi ABff:A1-1B
3 1 2 syl ABff:A1-1B
4 relsdom Rel
5 4 brrelex1i ABAV
6 5 adantr ABf:A1-1BAV
7 vex fV
8 7 rnex ranfV
9 8 a1i ABf:A1-1BranfV
10 f1f1orn f:A1-1Bf:A1-1 ontoranf
11 10 adantl ABf:A1-1Bf:A1-1 ontoranf
12 f1of1 f:A1-1 ontoranff:A1-1ranf
13 11 12 syl ABf:A1-1Bf:A1-1ranf
14 f1dom2g AVranfVf:A1-1ranfAranf
15 6 9 13 14 syl3anc ABf:A1-1BAranf
16 sdomnen AB¬AB
17 16 adantr ABf:A1-1B¬AB
18 ssdif0 BranfBranf=
19 simplr ABf:A1-1BBranff:A1-1B
20 f1f f:A1-1Bf:AB
21 20 frnd f:A1-1BranfB
22 19 21 syl ABf:A1-1BBranfranfB
23 simpr ABf:A1-1BBranfBranf
24 22 23 eqssd ABf:A1-1BBranfranf=B
25 dff1o5 f:A1-1 ontoBf:A1-1Branf=B
26 19 24 25 sylanbrc ABf:A1-1BBranff:A1-1 ontoB
27 f1oen3g fVf:A1-1 ontoBAB
28 7 26 27 sylancr ABf:A1-1BBranfAB
29 28 ex ABf:A1-1BBranfAB
30 18 29 biimtrrid ABf:A1-1BBranf=AB
31 17 30 mtod ABf:A1-1B¬Branf=
32 neq0 ¬Branf=wwBranf
33 31 32 sylib ABf:A1-1BwwBranf
34 snssi wBranfwBranf
35 vex wV
36 en2sn AVwVAw
37 6 35 36 sylancl ABf:A1-1BAw
38 4 brrelex2i ABBV
39 38 adantr ABf:A1-1BBV
40 difexg BVBranfV
41 ssdomg BranfVwBranfwBranf
42 39 40 41 3syl ABf:A1-1BwBranfwBranf
43 endomtr AwwBranfABranf
44 37 42 43 syl6an ABf:A1-1BwBranfABranf
45 34 44 syl5 ABf:A1-1BwBranfABranf
46 45 exlimdv ABf:A1-1BwwBranfABranf
47 33 46 mpd ABf:A1-1BABranf
48 disjdif ranfBranf=
49 48 a1i ABf:A1-1BranfBranf=
50 undom AranfABranfranfBranf=AAranfBranf
51 15 47 49 50 syl21anc ABf:A1-1BAAranfBranf
52 df-suc sucA=AA
53 52 a1i ABf:A1-1BsucA=AA
54 undif2 ranfBranf=ranfB
55 21 adantl ABf:A1-1BranfB
56 ssequn1 ranfBranfB=B
57 55 56 sylib ABf:A1-1BranfB=B
58 54 57 eqtr2id ABf:A1-1BB=ranfBranf
59 51 53 58 3brtr4d ABf:A1-1BsucAB
60 3 59 exlimddv ABsucAB