| Step | Hyp | Ref | Expression | 
						
							| 1 |  | summo.1 |  | 
						
							| 2 |  | summo.2 |  | 
						
							| 3 |  | summo.3 |  | 
						
							| 4 |  | fveq2 |  | 
						
							| 5 | 4 | sseq2d |  | 
						
							| 6 |  | seqeq1 |  | 
						
							| 7 | 6 | breq1d |  | 
						
							| 8 | 5 7 | anbi12d |  | 
						
							| 9 | 8 | cbvrexvw |  | 
						
							| 10 |  | reeanv |  | 
						
							| 11 |  | simprlr |  | 
						
							| 12 | 2 | ad4ant14 |  | 
						
							| 13 |  | simplrl |  | 
						
							| 14 |  | simplrr |  | 
						
							| 15 |  | simprll |  | 
						
							| 16 |  | simprrl |  | 
						
							| 17 | 1 12 13 14 15 16 | sumrb |  | 
						
							| 18 | 11 17 | mpbid |  | 
						
							| 19 |  | simprrr |  | 
						
							| 20 |  | climuni |  | 
						
							| 21 | 18 19 20 | syl2anc |  | 
						
							| 22 | 21 | exp31 |  | 
						
							| 23 | 22 | rexlimdvv |  | 
						
							| 24 | 10 23 | biimtrrid |  | 
						
							| 25 | 24 | expdimp |  | 
						
							| 26 | 9 25 | biimtrid |  | 
						
							| 27 | 1 2 3 | summolem2 |  | 
						
							| 28 | 26 27 | jaod |  | 
						
							| 29 | 1 2 3 | summolem2 |  | 
						
							| 30 |  | equcom |  | 
						
							| 31 | 29 30 | imbitrdi |  | 
						
							| 32 | 31 | impancom |  | 
						
							| 33 |  | oveq2 |  | 
						
							| 34 | 33 | f1oeq2d |  | 
						
							| 35 |  | fveq2 |  | 
						
							| 36 | 35 | eqeq2d |  | 
						
							| 37 | 34 36 | anbi12d |  | 
						
							| 38 | 37 | exbidv |  | 
						
							| 39 |  | f1oeq1 |  | 
						
							| 40 |  | fveq1 |  | 
						
							| 41 | 40 | csbeq1d |  | 
						
							| 42 | 41 | mpteq2dv |  | 
						
							| 43 | 3 42 | eqtrid |  | 
						
							| 44 | 43 | seqeq3d |  | 
						
							| 45 | 44 | fveq1d |  | 
						
							| 46 | 45 | eqeq2d |  | 
						
							| 47 | 39 46 | anbi12d |  | 
						
							| 48 | 47 | cbvexvw |  | 
						
							| 49 | 38 48 | bitrdi |  | 
						
							| 50 | 49 | cbvrexvw |  | 
						
							| 51 |  | reeanv |  | 
						
							| 52 |  | exdistrv |  | 
						
							| 53 |  | an4 |  | 
						
							| 54 | 2 | ad4ant14 |  | 
						
							| 55 |  | fveq2 |  | 
						
							| 56 | 55 | csbeq1d |  | 
						
							| 57 | 56 | cbvmptv |  | 
						
							| 58 | 3 57 | eqtri |  | 
						
							| 59 |  | fveq2 |  | 
						
							| 60 | 59 | csbeq1d |  | 
						
							| 61 | 60 | cbvmptv |  | 
						
							| 62 |  | simplr |  | 
						
							| 63 |  | simprl |  | 
						
							| 64 |  | simprr |  | 
						
							| 65 | 1 54 58 61 62 63 64 | summolem3 |  | 
						
							| 66 |  | eqeq12 |  | 
						
							| 67 | 65 66 | syl5ibrcom |  | 
						
							| 68 | 67 | expimpd |  | 
						
							| 69 | 53 68 | biimtrid |  | 
						
							| 70 | 69 | exlimdvv |  | 
						
							| 71 | 52 70 | biimtrrid |  | 
						
							| 72 | 71 | rexlimdvva |  | 
						
							| 73 | 51 72 | biimtrrid |  | 
						
							| 74 | 73 | expdimp |  | 
						
							| 75 | 50 74 | biimtrid |  | 
						
							| 76 | 32 75 | jaod |  | 
						
							| 77 | 28 76 | jaodan |  | 
						
							| 78 | 77 | expimpd |  | 
						
							| 79 | 78 | alrimivv |  | 
						
							| 80 |  | breq2 |  | 
						
							| 81 | 80 | anbi2d |  | 
						
							| 82 | 81 | rexbidv |  | 
						
							| 83 |  | eqeq1 |  | 
						
							| 84 | 83 | anbi2d |  | 
						
							| 85 | 84 | exbidv |  | 
						
							| 86 | 85 | rexbidv |  | 
						
							| 87 | 82 86 | orbi12d |  | 
						
							| 88 | 87 | mo4 |  | 
						
							| 89 | 79 88 | sylibr |  |