Description: The indexed supremum of a set of reals is the negation of the indexed infimum of that set's image under negation. (Contributed by Glauco Siliprandi, 2-Jan-2022)
Ref | Expression | ||
---|---|---|---|
Hypotheses | supminfxrrnmpt.x | |
|
supminfxrrnmpt.b | |
||
Assertion | supminfxrrnmpt | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | supminfxrrnmpt.x | |
|
2 | supminfxrrnmpt.b | |
|
3 | eqid | |
|
4 | 1 3 2 | rnmptssd | |
5 | 4 | supminfxr2 | |
6 | xnegex | |
|
7 | 3 | elrnmpt | |
8 | 6 7 | ax-mp | |
9 | 8 | biimpi | |
10 | eqid | |
|
11 | xnegneg | |
|
12 | 11 | eqcomd | |
13 | 12 | adantr | |
14 | xnegeq | |
|
15 | 14 | adantl | |
16 | 13 15 | eqtrd | |
17 | 16 | ex | |
18 | 17 | reximdv | |
19 | 18 | imp | |
20 | simpl | |
|
21 | 10 19 20 | elrnmptd | |
22 | 9 21 | sylan2 | |
23 | 22 | ex | |
24 | 23 | rgen | |
25 | rabss | |
|
26 | 25 | biimpri | |
27 | 24 26 | ax-mp | |
28 | 27 | a1i | |
29 | nfcv | |
|
30 | nfmpt1 | |
|
31 | 30 | nfrn | |
32 | 29 31 | nfel | |
33 | nfcv | |
|
34 | 32 33 | nfrabw | |
35 | xnegeq | |
|
36 | 35 | eleq1d | |
37 | 2 | xnegcld | |
38 | xnegneg | |
|
39 | 2 38 | syl | |
40 | simpr | |
|
41 | 3 40 2 | elrnmpt1d | |
42 | 39 41 | eqeltrd | |
43 | 36 37 42 | elrabd | |
44 | 1 34 10 43 | rnmptssdf | |
45 | 28 44 | eqssd | |
46 | 45 | infeq1d | |
47 | 46 | xnegeqd | |
48 | 5 47 | eqtrd | |