Metamath Proof Explorer


Theorem supxrbnd

Description: The supremum of a bounded-above nonempty set of reals is real. (Contributed by NM, 19-Jan-2006)

Ref Expression
Assertion supxrbnd AAsupA*<<+∞supA*<

Proof

Step Hyp Ref Expression
1 ressxr *
2 sstr A*A*
3 1 2 mpan2 AA*
4 supxrcl A*supA*<*
5 pnfxr +∞*
6 xrltne supA*<*+∞*supA*<<+∞+∞supA*<
7 5 6 mp3an2 supA*<*supA*<<+∞+∞supA*<
8 7 necomd supA*<*supA*<<+∞supA*<+∞
9 8 ex supA*<*supA*<<+∞supA*<+∞
10 4 9 syl A*supA*<<+∞supA*<+∞
11 supxrunb2 A*xyAx<ysupA*<=+∞
12 ssel2 A*yAy*
13 12 adantlr A*xyAy*
14 rexr xx*
15 14 ad2antlr A*xyAx*
16 xrlenlt y*x*yx¬x<y
17 16 con2bid y*x*x<y¬yx
18 13 15 17 syl2anc A*xyAx<y¬yx
19 18 rexbidva A*xyAx<yyA¬yx
20 rexnal yA¬yx¬yAyx
21 19 20 bitrdi A*xyAx<y¬yAyx
22 21 ralbidva A*xyAx<yx¬yAyx
23 11 22 bitr3d A*supA*<=+∞x¬yAyx
24 ralnex x¬yAyx¬xyAyx
25 23 24 bitrdi A*supA*<=+∞¬xyAyx
26 25 necon2abid A*xyAyxsupA*<+∞
27 10 26 sylibrd A*supA*<<+∞xyAyx
28 27 imp A*supA*<<+∞xyAyx
29 3 28 sylan AsupA*<<+∞xyAyx
30 29 3adant2 AAsupA*<<+∞xyAyx
31 supxrre AAxyAyxsupA*<=supA<
32 suprcl AAxyAyxsupA<
33 31 32 eqeltrd AAxyAyxsupA*<
34 30 33 syld3an3 AAsupA*<<+∞supA*<