Description: The supremum of a bounded-above nonempty set of reals is real. (Contributed by NM, 19-Jan-2006)
Ref | Expression | ||
---|---|---|---|
Assertion | supxrbnd | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ressxr | |
|
2 | sstr | |
|
3 | 1 2 | mpan2 | |
4 | supxrcl | |
|
5 | pnfxr | |
|
6 | xrltne | |
|
7 | 5 6 | mp3an2 | |
8 | 7 | necomd | |
9 | 8 | ex | |
10 | 4 9 | syl | |
11 | supxrunb2 | |
|
12 | ssel2 | |
|
13 | 12 | adantlr | |
14 | rexr | |
|
15 | 14 | ad2antlr | |
16 | xrlenlt | |
|
17 | 16 | con2bid | |
18 | 13 15 17 | syl2anc | |
19 | 18 | rexbidva | |
20 | rexnal | |
|
21 | 19 20 | bitrdi | |
22 | 21 | ralbidva | |
23 | 11 22 | bitr3d | |
24 | ralnex | |
|
25 | 23 24 | bitrdi | |
26 | 25 | necon2abid | |
27 | 10 26 | sylibrd | |
28 | 27 | imp | |
29 | 3 28 | sylan | |
30 | 29 | 3adant2 | |
31 | supxrre | |
|
32 | suprcl | |
|
33 | 31 32 | eqeltrd | |
34 | 30 33 | syld3an3 | |