Metamath Proof Explorer


Theorem swrdrn3

Description: Express the range of a subword. Stronger version of swrdrn2 . (Contributed by Thierry Arnoux, 13-Dec-2023)

Ref Expression
Assertion swrdrn3 WWordVM0NN0WranWsubstrMN=WM..^N

Proof

Step Hyp Ref Expression
1 simpr WWordVM0NN0Wi0..^NMi0..^NM
2 simpl3 WWordVM0NN0Wi0..^NMN0W
3 2 elfzelzd WWordVM0NN0Wi0..^NMN
4 simpl2 WWordVM0NN0Wi0..^NMM0N
5 4 elfzelzd WWordVM0NN0Wi0..^NMM
6 fzoaddel2 i0..^NMNMi+MM..^N
7 1 3 5 6 syl3anc WWordVM0NN0Wi0..^NMi+MM..^N
8 simpr WWordVM0NN0WjM..^NjM..^N
9 simpl2 WWordVM0NN0WjM..^NM0N
10 9 elfzelzd WWordVM0NN0WjM..^NM
11 10 zcnd WWordVM0NN0WjM..^NM
12 simpl3 WWordVM0NN0WjM..^NN0W
13 12 elfzelzd WWordVM0NN0WjM..^NN
14 13 zcnd WWordVM0NN0WjM..^NN
15 11 14 pncan3d WWordVM0NN0WjM..^NM+N-M=N
16 15 oveq2d WWordVM0NN0WjM..^NM..^M+N-M=M..^N
17 8 16 eleqtrrd WWordVM0NN0WjM..^NjM..^M+N-M
18 13 10 zsubcld WWordVM0NN0WjM..^NNM
19 fzosubel3 jM..^M+N-MNMjM0..^NM
20 17 18 19 syl2anc WWordVM0NN0WjM..^NjM0..^NM
21 simpr WWordVM0NN0WjM..^Ni=jMi=jM
22 21 oveq1d WWordVM0NN0WjM..^Ni=jMi+M=j-M+M
23 22 eqeq2d WWordVM0NN0WjM..^Ni=jMj=i+Mj=j-M+M
24 fzossz M..^N
25 24 8 sselid WWordVM0NN0WjM..^Nj
26 25 zcnd WWordVM0NN0WjM..^Nj
27 26 11 npcand WWordVM0NN0WjM..^Nj-M+M=j
28 27 eqcomd WWordVM0NN0WjM..^Nj=j-M+M
29 20 23 28 rspcedvd WWordVM0NN0WjM..^Ni0..^NMj=i+M
30 eqcom y=WjWj=y
31 simpr WWordVM0NN0Wj=i+Mj=i+M
32 31 fveq2d WWordVM0NN0Wj=i+MWj=Wi+M
33 32 eqeq2d WWordVM0NN0Wj=i+My=Wjy=Wi+M
34 30 33 bitr3id WWordVM0NN0Wj=i+MWj=yy=Wi+M
35 7 29 34 rexxfrd WWordVM0NN0WjM..^NWj=yi0..^NMy=Wi+M
36 eqid i0..^NMWi+M=i0..^NMWi+M
37 fvex Wi+MV
38 36 37 elrnmpti yrani0..^NMWi+Mi0..^NMy=Wi+M
39 35 38 bitr4di WWordVM0NN0WjM..^NWj=yyrani0..^NMWi+M
40 wrdf WWordVW:0..^WV
41 40 3ad2ant1 WWordVM0NN0WW:0..^WV
42 41 ffnd WWordVM0NN0WWFn0..^W
43 elfzuz M0NM0
44 43 3ad2ant2 WWordVM0NN0WM0
45 fzoss1 M0M..^N0..^N
46 44 45 syl WWordVM0NN0WM..^N0..^N
47 elfzuz3 N0WWN
48 47 3ad2ant3 WWordVM0NN0WWN
49 fzoss2 WN0..^N0..^W
50 48 49 syl WWordVM0NN0W0..^N0..^W
51 46 50 sstrd WWordVM0NN0WM..^N0..^W
52 42 51 fvelimabd WWordVM0NN0WyWM..^NjM..^NWj=y
53 swrdval2 WWordVM0NN0WWsubstrMN=i0..^NMWi+M
54 53 rneqd WWordVM0NN0WranWsubstrMN=rani0..^NMWi+M
55 54 eleq2d WWordVM0NN0WyranWsubstrMNyrani0..^NMWi+M
56 39 52 55 3bitr4rd WWordVM0NN0WyranWsubstrMNyWM..^N
57 56 eqrdv WWordVM0NN0WranWsubstrMN=WM..^N