Metamath Proof Explorer


Theorem symgextf1

Description: The extension of a permutation, fixing the additional element, is a 1-1 function. (Contributed by AV, 6-Jan-2019)

Ref Expression
Hypotheses symgext.s S=BaseSymGrpNK
symgext.e E=xNifx=KKZx
Assertion symgextf1 KNZSE:N1-1N

Proof

Step Hyp Ref Expression
1 symgext.s S=BaseSymGrpNK
2 symgext.e E=xNifx=KKZx
3 1 2 symgextf KNZSE:NN
4 difsnid KNNKK=N
5 4 eqcomd KNN=NKK
6 5 eleq2d KNyNyNKK
7 5 eleq2d KNzNzNKK
8 6 7 anbi12d KNyNzNyNKKzNKK
9 8 adantr KNZSyNzNyNKKzNKK
10 elun yNKKyNKyK
11 elun zNKKzNKzK
12 1 2 symgextfv KNZSyNKEy=Zy
13 12 com12 yNKKNZSEy=Zy
14 13 adantr yNKzNKKNZSEy=Zy
15 14 imp yNKzNKKNZSEy=Zy
16 1 2 symgextfv KNZSzNKEz=Zz
17 16 com12 zNKKNZSEz=Zz
18 17 adantl yNKzNKKNZSEz=Zz
19 18 imp yNKzNKKNZSEz=Zz
20 15 19 eqeq12d yNKzNKKNZSEy=EzZy=Zz
21 eqid SymGrpNK=SymGrpNK
22 21 1 symgbasf1o ZSZ:NK1-1 ontoNK
23 f1of1 Z:NK1-1 ontoNKZ:NK1-1NK
24 dff13 Z:NK1-1NKZ:NKNKiNKjNKZi=Zji=j
25 fveqeq2 i=yZi=ZjZy=Zj
26 equequ1 i=yi=jy=j
27 25 26 imbi12d i=yZi=Zji=jZy=Zjy=j
28 fveq2 j=zZj=Zz
29 28 eqeq2d j=zZy=ZjZy=Zz
30 equequ2 j=zy=jy=z
31 29 30 imbi12d j=zZy=Zjy=jZy=Zzy=z
32 27 31 rspc2va yNKzNKiNKjNKZi=Zji=jZy=Zzy=z
33 32 expcom iNKjNKZi=Zji=jyNKzNKZy=Zzy=z
34 33 a1d iNKjNKZi=Zji=jKNyNKzNKZy=Zzy=z
35 24 34 simplbiim Z:NK1-1NKKNyNKzNKZy=Zzy=z
36 22 23 35 3syl ZSKNyNKzNKZy=Zzy=z
37 36 impcom KNZSyNKzNKZy=Zzy=z
38 37 impcom yNKzNKKNZSZy=Zzy=z
39 20 38 sylbid yNKzNKKNZSEy=Ezy=z
40 39 ex yNKzNKKNZSEy=Ezy=z
41 1 2 symgextf1lem KNZSzNKyKEzEy
42 eqneqall Ez=EyEzEyy=z
43 42 eqcoms Ey=EzEzEyy=z
44 43 com12 EzEyEy=Ezy=z
45 41 44 syl6com zNKyKKNZSEy=Ezy=z
46 45 ancoms yKzNKKNZSEy=Ezy=z
47 1 2 symgextf1lem KNZSyNKzKEyEz
48 eqneqall Ey=EzEyEzy=z
49 48 com12 EyEzEy=Ezy=z
50 47 49 syl6com yNKzKKNZSEy=Ezy=z
51 elsni yKy=K
52 elsni zKz=K
53 eqtr3 y=Kz=Ky=z
54 53 2a1d y=Kz=KKNZSEy=Ezy=z
55 51 52 54 syl2an yKzKKNZSEy=Ezy=z
56 40 46 50 55 ccase yNKyKzNKzKKNZSEy=Ezy=z
57 10 11 56 syl2anb yNKKzNKKKNZSEy=Ezy=z
58 57 com12 KNZSyNKKzNKKEy=Ezy=z
59 9 58 sylbid KNZSyNzNEy=Ezy=z
60 59 ralrimivv KNZSyNzNEy=Ezy=z
61 dff13 E:N1-1NE:NNyNzNEy=Ezy=z
62 3 60 61 sylanbrc KNZSE:N1-1N