Description: The extension of a permutation, fixing the additional element, is a 1-1 function. (Contributed by AV, 6-Jan-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | symgext.s | |
|
symgext.e | |
||
Assertion | symgextf1 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | symgext.s | |
|
2 | symgext.e | |
|
3 | 1 2 | symgextf | |
4 | difsnid | |
|
5 | 4 | eqcomd | |
6 | 5 | eleq2d | |
7 | 5 | eleq2d | |
8 | 6 7 | anbi12d | |
9 | 8 | adantr | |
10 | elun | |
|
11 | elun | |
|
12 | 1 2 | symgextfv | |
13 | 12 | com12 | |
14 | 13 | adantr | |
15 | 14 | imp | |
16 | 1 2 | symgextfv | |
17 | 16 | com12 | |
18 | 17 | adantl | |
19 | 18 | imp | |
20 | 15 19 | eqeq12d | |
21 | eqid | |
|
22 | 21 1 | symgbasf1o | |
23 | f1of1 | |
|
24 | dff13 | |
|
25 | fveqeq2 | |
|
26 | equequ1 | |
|
27 | 25 26 | imbi12d | |
28 | fveq2 | |
|
29 | 28 | eqeq2d | |
30 | equequ2 | |
|
31 | 29 30 | imbi12d | |
32 | 27 31 | rspc2va | |
33 | 32 | expcom | |
34 | 33 | a1d | |
35 | 24 34 | simplbiim | |
36 | 22 23 35 | 3syl | |
37 | 36 | impcom | |
38 | 37 | impcom | |
39 | 20 38 | sylbid | |
40 | 39 | ex | |
41 | 1 2 | symgextf1lem | |
42 | eqneqall | |
|
43 | 42 | eqcoms | |
44 | 43 | com12 | |
45 | 41 44 | syl6com | |
46 | 45 | ancoms | |
47 | 1 2 | symgextf1lem | |
48 | eqneqall | |
|
49 | 48 | com12 | |
50 | 47 49 | syl6com | |
51 | elsni | |
|
52 | elsni | |
|
53 | eqtr3 | |
|
54 | 53 | 2a1d | |
55 | 51 52 54 | syl2an | |
56 | 40 46 50 55 | ccase | |
57 | 10 11 56 | syl2anb | |
58 | 57 | com12 | |
59 | 9 58 | sylbid | |
60 | 59 | ralrimivv | |
61 | dff13 | |
|
62 | 3 60 61 | sylanbrc | |