Metamath Proof Explorer


Theorem tendoipl

Description: Property of the additive inverse endomorphism. (Contributed by NM, 12-Jun-2013)

Ref Expression
Hypotheses tendoicl.h H=LHypK
tendoicl.t T=LTrnKW
tendoicl.e E=TEndoKW
tendoicl.i I=sEfTsf-1
tendoi.b B=BaseK
tendoi.p P=sE,tEfTsftf
tendoi.o O=fTIB
Assertion tendoipl KHLWHSEISPS=O

Proof

Step Hyp Ref Expression
1 tendoicl.h H=LHypK
2 tendoicl.t T=LTrnKW
3 tendoicl.e E=TEndoKW
4 tendoicl.i I=sEfTsf-1
5 tendoi.b B=BaseK
6 tendoi.p P=sE,tEfTsftf
7 tendoi.o O=fTIB
8 simpl KHLWHSEKHLWH
9 1 2 3 4 tendoicl KHLWHSEISE
10 simpr KHLWHSESE
11 1 2 3 6 tendoplcl KHLWHISESEISPSE
12 8 9 10 11 syl3anc KHLWHSEISPSE
13 5 1 2 3 7 tendo0cl KHLWHOE
14 13 adantr KHLWHSEOE
15 4 2 tendoi2 SEgTISg=Sg-1
16 15 adantll KHLWHSEgTISg=Sg-1
17 16 coeq1d KHLWHSEgTISgSg=Sg-1Sg
18 simpll KHLWHSEgTKHLWH
19 1 2 3 tendocl KHLWHSEgTSgT
20 19 3expa KHLWHSEgTSgT
21 5 1 2 ltrn1o KHLWHSgTSg:B1-1 ontoB
22 18 20 21 syl2anc KHLWHSEgTSg:B1-1 ontoB
23 f1ococnv1 Sg:B1-1 ontoBSg-1Sg=IB
24 22 23 syl KHLWHSEgTSg-1Sg=IB
25 17 24 eqtrd KHLWHSEgTISgSg=IB
26 9 adantr KHLWHSEgTISE
27 simplr KHLWHSEgTSE
28 simpr KHLWHSEgTgT
29 6 2 tendopl2 ISESEgTISPSg=ISgSg
30 26 27 28 29 syl3anc KHLWHSEgTISPSg=ISgSg
31 7 5 tendo02 gTOg=IB
32 31 adantl KHLWHSEgTOg=IB
33 25 30 32 3eqtr4d KHLWHSEgTISPSg=Og
34 33 ralrimiva KHLWHSEgTISPSg=Og
35 1 2 3 tendoeq1 KHLWHISPSEOEgTISPSg=OgISPS=O
36 8 12 14 34 35 syl121anc KHLWHSEISPS=O