Metamath Proof Explorer


Theorem tfisi

Description: A transfinite induction scheme in "implicit" form where the induction is done on an object derived from the object of interest. (Contributed by Stefan O'Rear, 24-Aug-2015)

Ref Expression
Hypotheses tfisi.a φAV
tfisi.b φTOn
tfisi.c φROnRTySRχψ
tfisi.d x=yψχ
tfisi.e x=Aψθ
tfisi.f x=yR=S
tfisi.g x=AR=T
Assertion tfisi φθ

Proof

Step Hyp Ref Expression
1 tfisi.a φAV
2 tfisi.b φTOn
3 tfisi.c φROnRTySRχψ
4 tfisi.d x=yψχ
5 tfisi.e x=Aψθ
6 tfisi.f x=yR=S
7 tfisi.g x=AR=T
8 ssid TT
9 eqid T=T
10 eqeq2 z=wR=zR=w
11 sseq1 z=wzTwT
12 11 anbi2d z=wφzTφwT
13 12 imbi1d z=wφzTψφwTψ
14 10 13 imbi12d z=wR=zφzTψR=wφwTψ
15 14 albidv z=wxR=zφzTψxR=wφwTψ
16 6 eqeq1d x=yR=wS=w
17 4 imbi2d x=yφwTψφwTχ
18 16 17 imbi12d x=yR=wφwTψS=wφwTχ
19 18 cbvalvw xR=wφwTψyS=wφwTχ
20 15 19 bitrdi z=wxR=zφzTψyS=wφwTχ
21 eqeq2 z=TR=zR=T
22 sseq1 z=TzTTT
23 22 anbi2d z=TφzTφTT
24 23 imbi1d z=TφzTψφTTψ
25 21 24 imbi12d z=TR=zφzTψR=TφTTψ
26 25 albidv z=TxR=zφzTψxR=TφTTψ
27 simp3l zOnwzyS=wφwTχR=zφzTφ
28 simp2 zOnwzyS=wφwTχR=zφzTR=z
29 simp1l zOnwzyS=wφwTχR=zφzTzOn
30 28 29 eqeltrd zOnwzyS=wφwTχR=zφzTROn
31 simp3r zOnwzyS=wφwTχR=zφzTzT
32 28 31 eqsstrd zOnwzyS=wφwTχR=zφzTRT
33 simpl3l zOnwzyS=wφwTχR=zφzTv/xRRφ
34 simpl1l zOnwzyS=wφwTχR=zφzTv/xRRzOn
35 simpr zOnwzyS=wφwTχR=zφzTv/xRRv/xRR
36 simpl2 zOnwzyS=wφwTχR=zφzTv/xRRR=z
37 35 36 eleqtrd zOnwzyS=wφwTχR=zφzTv/xRRv/xRz
38 onelss zOnv/xRzv/xRz
39 34 37 38 sylc zOnwzyS=wφwTχR=zφzTv/xRRv/xRz
40 simpl3r zOnwzyS=wφwTχR=zφzTv/xRRzT
41 39 40 sstrd zOnwzyS=wφwTχR=zφzTv/xRRv/xRT
42 eqeq2 w=v/xRS=wS=v/xR
43 sseq1 w=v/xRwTv/xRT
44 43 anbi2d w=v/xRφwTφv/xRT
45 44 imbi1d w=v/xRφwTχφv/xRTχ
46 42 45 imbi12d w=v/xRS=wφwTχS=v/xRφv/xRTχ
47 46 albidv w=v/xRyS=wφwTχyS=v/xRφv/xRTχ
48 simpl1r zOnwzyS=wφwTχR=zφzTv/xRRwzyS=wφwTχ
49 47 48 37 rspcdva zOnwzyS=wφwTχR=zφzTv/xRRyS=v/xRφv/xRTχ
50 eqidd zOnwzyS=wφwTχR=zφzTv/xRRv/xR=v/xR
51 nfcv _xy
52 nfcv _xS
53 51 52 6 csbhypf v=yv/xR=S
54 53 eqcomd v=yS=v/xR
55 54 equcoms y=vS=v/xR
56 55 eqeq1d y=vS=v/xRv/xR=v/xR
57 nfv xχ
58 57 4 sbhypf v=yvxψχ
59 58 bicomd v=yχvxψ
60 59 equcoms y=vχvxψ
61 60 imbi2d y=vφv/xRTχφv/xRTvxψ
62 56 61 imbi12d y=vS=v/xRφv/xRTχv/xR=v/xRφv/xRTvxψ
63 62 spvv yS=v/xRφv/xRTχv/xR=v/xRφv/xRTvxψ
64 49 50 63 sylc zOnwzyS=wφwTχR=zφzTv/xRRφv/xRTvxψ
65 33 41 64 mp2and zOnwzyS=wφwTχR=zφzTv/xRRvxψ
66 65 ex zOnwzyS=wφwTχR=zφzTv/xRRvxψ
67 66 alrimiv zOnwzyS=wφwTχR=zφzTvv/xRRvxψ
68 53 eleq1d v=yv/xRRSR
69 68 58 imbi12d v=yv/xRRvxψSRχ
70 69 cbvalvw vv/xRRvxψySRχ
71 67 70 sylib zOnwzyS=wφwTχR=zφzTySRχ
72 27 30 32 71 3 syl121anc zOnwzyS=wφwTχR=zφzTψ
73 72 3exp zOnwzyS=wφwTχR=zφzTψ
74 73 alrimiv zOnwzyS=wφwTχxR=zφzTψ
75 74 ex zOnwzyS=wφwTχxR=zφzTψ
76 20 26 75 tfis3 TOnxR=TφTTψ
77 2 76 syl φxR=TφTTψ
78 7 eqeq1d x=AR=TT=T
79 5 imbi2d x=AφTTψφTTθ
80 78 79 imbi12d x=AR=TφTTψT=TφTTθ
81 80 spcgv AVxR=TφTTψT=TφTTθ
82 1 77 81 sylc φT=TφTTθ
83 9 82 mpi φφTTθ
84 83 expd φφTTθ
85 84 pm2.43i φTTθ
86 8 85 mpi φθ