Metamath Proof Explorer


Theorem tgoldbachgtd

Description: Odd integers greater than ( ; 1 0 ^ ; 2 7 ) have at least a representation as a sum of three odd primes. Final statement in section 7.4 of Helfgott p. 70. (Contributed by Thierry Arnoux, 15-Dec-2021)

Ref Expression
Hypotheses tgoldbachgtd.o O=z|¬2z
tgoldbachgtd.n φNO
tgoldbachgtd.1 φ1027N
Assertion tgoldbachgtd φ0<Orepr3N

Proof

Step Hyp Ref Expression
1 tgoldbachgtd.o O=z|¬2z
2 tgoldbachgtd.n φNO
3 tgoldbachgtd.1 φ1027N
4 2 ad3antrrr φh0+∞k0+∞mkm1 .079955mhm1 .4140 .00042248N201Λ×fhvtsNxΛ×fkvtsNx2ei2π- NxdxNO
5 3 ad3antrrr φh0+∞k0+∞mkm1 .079955mhm1 .4140 .00042248N201Λ×fhvtsNxΛ×fkvtsNx2ei2π- Nxdx1027N
6 elmapi h0+∞h:0+∞
7 6 ad3antlr φh0+∞k0+∞mkm1 .079955mhm1 .4140 .00042248N201Λ×fhvtsNxΛ×fkvtsNx2ei2π- Nxdxh:0+∞
8 elmapi k0+∞k:0+∞
9 8 ad2antlr φh0+∞k0+∞mkm1 .079955mhm1 .4140 .00042248N201Λ×fhvtsNxΛ×fkvtsNx2ei2π- Nxdxk:0+∞
10 simpr1 φh0+∞k0+∞mkm1 .079955mhm1 .4140 .00042248N201Λ×fhvtsNxΛ×fkvtsNx2ei2π- Nxdxmkm1 .079955
11 fveq2 m=nkm=kn
12 11 breq1d m=nkm1 .079955kn1 .079955
13 12 cbvralvw mkm1 .079955nkn1 .079955
14 10 13 sylib φh0+∞k0+∞mkm1 .079955mhm1 .4140 .00042248N201Λ×fhvtsNxΛ×fkvtsNx2ei2π- Nxdxnkn1 .079955
15 14 r19.21bi φh0+∞k0+∞mkm1 .079955mhm1 .4140 .00042248N201Λ×fhvtsNxΛ×fkvtsNx2ei2π- Nxdxnkn1 .079955
16 simpr2 φh0+∞k0+∞mkm1 .079955mhm1 .4140 .00042248N201Λ×fhvtsNxΛ×fkvtsNx2ei2π- Nxdxmhm1 .414
17 fveq2 m=nhm=hn
18 17 breq1d m=nhm1 .414hn1 .414
19 18 cbvralvw mhm1 .414nhn1 .414
20 16 19 sylib φh0+∞k0+∞mkm1 .079955mhm1 .4140 .00042248N201Λ×fhvtsNxΛ×fkvtsNx2ei2π- Nxdxnhn1 .414
21 20 r19.21bi φh0+∞k0+∞mkm1 .079955mhm1 .4140 .00042248N201Λ×fhvtsNxΛ×fkvtsNx2ei2π- Nxdxnhn1 .414
22 simpr3 φh0+∞k0+∞mkm1 .079955mhm1 .4140 .00042248N201Λ×fhvtsNxΛ×fkvtsNx2ei2π- Nxdx0 .00042248N201Λ×fhvtsNxΛ×fkvtsNx2ei2π- Nxdx
23 fveq2 x=yΛ×fhvtsNx=Λ×fhvtsNy
24 fveq2 x=yΛ×fkvtsNx=Λ×fkvtsNy
25 24 oveq1d x=yΛ×fkvtsNx2=Λ×fkvtsNy2
26 23 25 oveq12d x=yΛ×fhvtsNxΛ×fkvtsNx2=Λ×fhvtsNyΛ×fkvtsNy2
27 oveq2 x=y- Nx=- Ny
28 27 oveq2d x=yi2π- Nx=i2π- Ny
29 28 fveq2d x=yei2π- Nx=ei2π- Ny
30 26 29 oveq12d x=yΛ×fhvtsNxΛ×fkvtsNx2ei2π- Nx=Λ×fhvtsNyΛ×fkvtsNy2ei2π- Ny
31 30 cbvitgv 01Λ×fhvtsNxΛ×fkvtsNx2ei2π- Nxdx=01Λ×fhvtsNyΛ×fkvtsNy2ei2π- Nydy
32 22 31 breqtrdi φh0+∞k0+∞mkm1 .079955mhm1 .4140 .00042248N201Λ×fhvtsNxΛ×fkvtsNx2ei2π- Nxdx0 .00042248N201Λ×fhvtsNyΛ×fkvtsNy2ei2π- Nydy
33 1 4 5 7 9 15 21 32 tgoldbachgtda φh0+∞k0+∞mkm1 .079955mhm1 .4140 .00042248N201Λ×fhvtsNxΛ×fkvtsNx2ei2π- Nxdx0<Orepr3N
34 1 2 3 hgt749d φh0+∞k0+∞mkm1 .079955mhm1 .4140 .00042248N201Λ×fhvtsNxΛ×fkvtsNx2ei2π- Nxdx
35 33 34 r19.29vva φ0<Orepr3N