| Step |
Hyp |
Ref |
Expression |
| 1 |
|
tgoldbachgt.o |
|
| 2 |
|
tgoldbachgt.g |
|
| 3 |
|
10nn |
|
| 4 |
|
2nn0 |
|
| 5 |
|
7nn0 |
|
| 6 |
4 5
|
deccl |
|
| 7 |
|
nnexpcl |
|
| 8 |
3 6 7
|
mp2an |
|
| 9 |
8
|
nnrei |
|
| 10 |
9
|
leidi |
|
| 11 |
|
simpl |
|
| 12 |
|
inss2 |
|
| 13 |
|
prmssnn |
|
| 14 |
12 13
|
sstri |
|
| 15 |
14
|
a1i |
|
| 16 |
1
|
eleq2i |
|
| 17 |
|
elrabi |
|
| 18 |
16 17
|
sylbi |
|
| 19 |
18
|
ad2antrr |
|
| 20 |
|
3nn0 |
|
| 21 |
20
|
a1i |
|
| 22 |
|
simpr |
|
| 23 |
15 19 21 22
|
reprf |
|
| 24 |
|
c0ex |
|
| 25 |
24
|
tpid1 |
|
| 26 |
|
fzo0to3tp |
|
| 27 |
25 26
|
eleqtrri |
|
| 28 |
27
|
a1i |
|
| 29 |
23 28
|
ffvelcdmd |
|
| 30 |
29
|
elin2d |
|
| 31 |
|
1ex |
|
| 32 |
31
|
tpid2 |
|
| 33 |
32 26
|
eleqtrri |
|
| 34 |
33
|
a1i |
|
| 35 |
23 34
|
ffvelcdmd |
|
| 36 |
35
|
elin2d |
|
| 37 |
|
2ex |
|
| 38 |
37
|
tpid3 |
|
| 39 |
38 26
|
eleqtrri |
|
| 40 |
39
|
a1i |
|
| 41 |
23 40
|
ffvelcdmd |
|
| 42 |
41
|
elin2d |
|
| 43 |
29
|
elin1d |
|
| 44 |
35
|
elin1d |
|
| 45 |
41
|
elin1d |
|
| 46 |
43 44 45
|
3jca |
|
| 47 |
26
|
a1i |
|
| 48 |
47
|
sumeq1d |
|
| 49 |
15 19 21 22
|
reprsum |
|
| 50 |
|
fveq2 |
|
| 51 |
|
fveq2 |
|
| 52 |
|
fveq2 |
|
| 53 |
14 29
|
sselid |
|
| 54 |
53
|
nncnd |
|
| 55 |
14 35
|
sselid |
|
| 56 |
55
|
nncnd |
|
| 57 |
14 41
|
sselid |
|
| 58 |
57
|
nncnd |
|
| 59 |
54 56 58
|
3jca |
|
| 60 |
24
|
a1i |
|
| 61 |
31
|
a1i |
|
| 62 |
37
|
a1i |
|
| 63 |
60 61 62
|
3jca |
|
| 64 |
|
0ne1 |
|
| 65 |
64
|
a1i |
|
| 66 |
|
0ne2 |
|
| 67 |
66
|
a1i |
|
| 68 |
|
1ne2 |
|
| 69 |
68
|
a1i |
|
| 70 |
50 51 52 59 63 65 67 69
|
sumtp |
|
| 71 |
48 49 70
|
3eqtr3d |
|
| 72 |
46 71
|
jca |
|
| 73 |
|
eleq1 |
|
| 74 |
73
|
3anbi1d |
|
| 75 |
|
oveq1 |
|
| 76 |
75
|
oveq1d |
|
| 77 |
76
|
eqeq2d |
|
| 78 |
74 77
|
anbi12d |
|
| 79 |
|
eleq1 |
|
| 80 |
79
|
3anbi2d |
|
| 81 |
|
oveq2 |
|
| 82 |
81
|
oveq1d |
|
| 83 |
82
|
eqeq2d |
|
| 84 |
80 83
|
anbi12d |
|
| 85 |
|
eleq1 |
|
| 86 |
85
|
3anbi3d |
|
| 87 |
|
oveq2 |
|
| 88 |
87
|
eqeq2d |
|
| 89 |
86 88
|
anbi12d |
|
| 90 |
78 84 89
|
rspc3ev |
|
| 91 |
30 36 42 72 90
|
syl31anc |
|
| 92 |
91
|
adantr |
|
| 93 |
8
|
a1i |
|
| 94 |
93
|
nnred |
|
| 95 |
18
|
zred |
|
| 96 |
95
|
adantr |
|
| 97 |
|
simpr |
|
| 98 |
94 96 97
|
ltled |
|
| 99 |
1 11 98
|
tgoldbachgtd |
|
| 100 |
|
ovex |
|
| 101 |
|
hashneq0 |
|
| 102 |
100 101
|
ax-mp |
|
| 103 |
99 102
|
sylib |
|
| 104 |
103
|
neneqd |
|
| 105 |
|
neq0 |
|
| 106 |
104 105
|
sylib |
|
| 107 |
|
tru |
|
| 108 |
106 107
|
jctil |
|
| 109 |
|
19.42v |
|
| 110 |
108 109
|
sylibr |
|
| 111 |
|
exancom |
|
| 112 |
110 111
|
sylib |
|
| 113 |
|
df-rex |
|
| 114 |
112 113
|
sylibr |
|
| 115 |
92 114
|
r19.29a |
|
| 116 |
2
|
eleq2i |
|
| 117 |
|
eqeq1 |
|
| 118 |
117
|
anbi2d |
|
| 119 |
118
|
rexbidv |
|
| 120 |
119
|
rexbidv |
|
| 121 |
120
|
rexbidv |
|
| 122 |
121
|
elrab3 |
|
| 123 |
116 122
|
bitrid |
|
| 124 |
123
|
biimpar |
|
| 125 |
11 115 124
|
syl2anc |
|
| 126 |
125
|
ex |
|
| 127 |
126
|
rgen |
|
| 128 |
10 127
|
pm3.2i |
|
| 129 |
|
breq1 |
|
| 130 |
|
breq1 |
|
| 131 |
130
|
imbi1d |
|
| 132 |
131
|
ralbidv |
|
| 133 |
129 132
|
anbi12d |
|
| 134 |
133
|
rspcev |
|
| 135 |
8 128 134
|
mp2an |
|