Metamath Proof Explorer


Theorem toponmre

Description: The topologies over a given base set form a Moore collection: the intersection of any family of them is a topology, including the empty (relative) intersection which gives the discrete topology distop . (Contributed by Stefan O'Rear, 31-Jan-2015) (Revised by Mario Carneiro, 5-May-2015)

Ref Expression
Assertion toponmre BVTopOnBMoore𝒫B

Proof

Step Hyp Ref Expression
1 toponsspwpw TopOnB𝒫𝒫B
2 1 a1i BVTopOnB𝒫𝒫B
3 distopon BV𝒫BTopOnB
4 simpl bTopOnBbbTopOnB
5 4 sselda bTopOnBbxbxTopOnB
6 5 adantrl bTopOnBbcbxbxTopOnB
7 topontop xTopOnBxTop
8 6 7 syl bTopOnBbcbxbxTop
9 simpl cbxbcb
10 intss1 xbbx
11 10 adantl cbxbbx
12 9 11 sstrd cbxbcx
13 12 adantl bTopOnBbcbxbcx
14 uniopn xTopcxcx
15 8 13 14 syl2anc bTopOnBbcbxbcx
16 15 expr bTopOnBbcbxbcx
17 16 ralrimiv bTopOnBbcbxbcx
18 vuniex cV
19 18 elint2 cbxbcx
20 17 19 sylibr bTopOnBbcbcb
21 20 ex bTopOnBbcbcb
22 21 alrimiv bTopOnBbccbcb
23 simpll bTopOnBbcbxbbTopOnB
24 23 sselda bTopOnBbcbxbybyTopOnB
25 topontop yTopOnByTop
26 24 25 syl bTopOnBbcbxbybyTop
27 intss1 ybby
28 27 adantl bTopOnBbcbxbybby
29 simplrl bTopOnBbcbxbybcb
30 28 29 sseldd bTopOnBbcbxbybcy
31 simplrr bTopOnBbcbxbybxb
32 28 31 sseldd bTopOnBbcbxbybxy
33 inopn yTopcyxycxy
34 26 30 32 33 syl3anc bTopOnBbcbxbybcxy
35 34 ralrimiva bTopOnBbcbxbybcxy
36 vex cV
37 36 inex1 cxV
38 37 elint2 cxbybcxy
39 35 38 sylibr bTopOnBbcbxbcxb
40 39 ralrimivva bTopOnBbcbxbcxb
41 intex bbV
42 41 biimpi bbV
43 42 adantl bTopOnBbbV
44 istopg bVbTopccbcbcbxbcxb
45 43 44 syl bTopOnBbbTopccbcbcbxbcxb
46 22 40 45 mpbir2and bTopOnBbbTop
47 46 3adant1 BVbTopOnBbbTop
48 n0 bxxb
49 48 biimpi bxxb
50 49 ad2antlr bTopOnBbcbxxb
51 10 sselda xbcbcx
52 51 ancoms cbxbcx
53 elssuni cxcx
54 52 53 syl cbxbcx
55 54 adantl bTopOnBbcbxbcx
56 5 adantrl bTopOnBbcbxbxTopOnB
57 toponuni xTopOnBB=x
58 56 57 syl bTopOnBbcbxbB=x
59 55 58 sseqtrrd bTopOnBbcbxbcB
60 59 expr bTopOnBbcbxbcB
61 60 exlimdv bTopOnBbcbxxbcB
62 50 61 mpd bTopOnBbcbcB
63 62 ralrimiva bTopOnBbcbcB
64 unissb bBcbcB
65 63 64 sylibr bTopOnBbbB
66 65 3adant1 BVbTopOnBbbB
67 4 sselda bTopOnBbcbcTopOnB
68 toponuni cTopOnBB=c
69 67 68 syl bTopOnBbcbB=c
70 topontop cTopOnBcTop
71 eqid c=c
72 71 topopn cTopcc
73 67 70 72 3syl bTopOnBbcbcc
74 69 73 eqeltrd bTopOnBbcbBc
75 74 ralrimiva bTopOnBbcbBc
76 75 3adant1 BVbTopOnBbcbBc
77 elintg BVBbcbBc
78 77 3ad2ant1 BVbTopOnBbBbcbBc
79 76 78 mpbird BVbTopOnBbBb
80 unissel bBBbb=B
81 66 79 80 syl2anc BVbTopOnBbb=B
82 81 eqcomd BVbTopOnBbB=b
83 istopon bTopOnBbTopB=b
84 47 82 83 sylanbrc BVbTopOnBbbTopOnB
85 2 3 84 ismred BVTopOnBMoore𝒫B