Metamath Proof Explorer


Theorem trfg

Description: The trace operation and the filGen operation are inverses to one another in some sense, with filGen growing the base set and ` |``t ` shrinking it. See fgtr for the converse cancellation law. (Contributed by Mario Carneiro, 15-Oct-2015)

Ref Expression
Assertion trfg FFilAAXXVXfilGenF𝑡A=F

Proof

Step Hyp Ref Expression
1 filfbas FFilAFfBasA
2 1 3ad2ant1 FFilAAXXVFfBasA
3 filsspw FFilAF𝒫A
4 3 3ad2ant1 FFilAAXXVF𝒫A
5 simp2 FFilAAXXVAX
6 5 sspwd FFilAAXXV𝒫A𝒫X
7 4 6 sstrd FFilAAXXVF𝒫X
8 simp3 FFilAAXXVXV
9 fbasweak FfBasAF𝒫XXVFfBasX
10 2 7 8 9 syl3anc FFilAAXXVFfBasX
11 fgcl FfBasXXfilGenFFilX
12 10 11 syl FFilAAXXVXfilGenFFilX
13 filtop FFilAAF
14 13 3ad2ant1 FFilAAXXVAF
15 restval XfilGenFFilXAFXfilGenF𝑡A=ranxXfilGenFxA
16 12 14 15 syl2anc FFilAAXXVXfilGenF𝑡A=ranxXfilGenFxA
17 elfg FfBasXxXfilGenFxXyFyx
18 10 17 syl FFilAAXXVxXfilGenFxXyFyx
19 18 simplbda FFilAAXXVxXfilGenFyFyx
20 simpll1 FFilAAXXVxXfilGenFyFyxFFilA
21 simprl FFilAAXXVxXfilGenFyFyxyF
22 inss2 xAA
23 22 a1i FFilAAXXVxXfilGenFyFyxxAA
24 simprr FFilAAXXVxXfilGenFyFyxyx
25 filelss FFilAyFyA
26 25 3ad2antl1 FFilAAXXVyFyA
27 26 ad2ant2r FFilAAXXVxXfilGenFyFyxyA
28 24 27 ssind FFilAAXXVxXfilGenFyFyxyxA
29 filss FFilAyFxAAyxAxAF
30 20 21 23 28 29 syl13anc FFilAAXXVxXfilGenFyFyxxAF
31 19 30 rexlimddv FFilAAXXVxXfilGenFxAF
32 31 fmpttd FFilAAXXVxXfilGenFxA:XfilGenFF
33 32 frnd FFilAAXXVranxXfilGenFxAF
34 16 33 eqsstrd FFilAAXXVXfilGenF𝑡AF
35 filelss FFilAxFxA
36 35 3ad2antl1 FFilAAXXVxFxA
37 df-ss xAxA=x
38 36 37 sylib FFilAAXXVxFxA=x
39 12 adantr FFilAAXXVxFXfilGenFFilX
40 14 adantr FFilAAXXVxFAF
41 ssfg FfBasXFXfilGenF
42 10 41 syl FFilAAXXVFXfilGenF
43 42 sselda FFilAAXXVxFxXfilGenF
44 elrestr XfilGenFFilXAFxXfilGenFxAXfilGenF𝑡A
45 39 40 43 44 syl3anc FFilAAXXVxFxAXfilGenF𝑡A
46 38 45 eqeltrrd FFilAAXXVxFxXfilGenF𝑡A
47 34 46 eqelssd FFilAAXXVXfilGenF𝑡A=F