| Step | Hyp | Ref | Expression | 
						
							| 1 |  | is2ndc |  | 
						
							| 2 |  | is2ndc |  | 
						
							| 3 |  | reeanv |  | 
						
							| 4 |  | an4 |  | 
						
							| 5 |  | txbasval |  | 
						
							| 6 |  | eqid |  | 
						
							| 7 | 6 | txval |  | 
						
							| 8 | 5 7 | eqtrd |  | 
						
							| 9 | 8 | adantr |  | 
						
							| 10 | 6 | txbas |  | 
						
							| 11 | 10 | adantr |  | 
						
							| 12 |  | omelon |  | 
						
							| 13 |  | vex |  | 
						
							| 14 | 13 | xpdom1 |  | 
						
							| 15 |  | omex |  | 
						
							| 16 | 15 | xpdom2 |  | 
						
							| 17 |  | domtr |  | 
						
							| 18 | 14 16 17 | syl2an |  | 
						
							| 19 | 18 | adantl |  | 
						
							| 20 |  | xpomen |  | 
						
							| 21 |  | domentr |  | 
						
							| 22 | 19 20 21 | sylancl |  | 
						
							| 23 |  | ondomen |  | 
						
							| 24 | 12 22 23 | sylancr |  | 
						
							| 25 |  | eqid |  | 
						
							| 26 |  | vex |  | 
						
							| 27 |  | vex |  | 
						
							| 28 | 26 27 | xpex |  | 
						
							| 29 | 25 28 | fnmpoi |  | 
						
							| 30 | 29 | a1i |  | 
						
							| 31 |  | dffn4 |  | 
						
							| 32 | 30 31 | sylib |  | 
						
							| 33 |  | fodomnum |  | 
						
							| 34 | 24 32 33 | sylc |  | 
						
							| 35 |  | domtr |  | 
						
							| 36 | 34 22 35 | syl2anc |  | 
						
							| 37 |  | 2ndci |  | 
						
							| 38 | 11 36 37 | syl2anc |  | 
						
							| 39 | 9 38 | eqeltrd |  | 
						
							| 40 |  | oveq12 |  | 
						
							| 41 | 40 | eleq1d |  | 
						
							| 42 | 39 41 | syl5ibcom |  | 
						
							| 43 | 42 | expimpd |  | 
						
							| 44 | 4 43 | biimtrid |  | 
						
							| 45 | 44 | rexlimivv |  | 
						
							| 46 | 3 45 | sylbir |  | 
						
							| 47 | 1 2 46 | syl2anb |  |