Metamath Proof Explorer


Theorem uhgr2edg

Description: If a vertex is adjacent to two different vertices in a hypergraph, there are more than one edges starting at this vertex. (Contributed by Alexander van der Vekens, 10-Dec-2017) (Revised by AV, 11-Feb-2021)

Ref Expression
Hypotheses usgrf1oedg.i I=iEdgG
usgrf1oedg.e E=EdgG
uhgr2edg.v V=VtxG
Assertion uhgr2edg GUHGraphABAVBVNVNAEBNExdomIydomIxyNIxNIy

Proof

Step Hyp Ref Expression
1 usgrf1oedg.i I=iEdgG
2 usgrf1oedg.e E=EdgG
3 uhgr2edg.v V=VtxG
4 simp1l GUHGraphABAVBVNVNAEBNEGUHGraph
5 simp1r GUHGraphABAVBVNVNAEBNEAB
6 simp23 GUHGraphABAVBVNVNAEBNENV
7 simp21 GUHGraphABAVBVNVNAEBNEAV
8 3simpc AVBVNVBVNV
9 8 3ad2ant2 GUHGraphABAVBVNVNAEBNEBVNV
10 6 7 9 jca31 GUHGraphABAVBVNVNAEBNENVAVBVNV
11 4 5 10 jca31 GUHGraphABAVBVNVNAEBNEGUHGraphABNVAVBVNV
12 simp3 GUHGraphABAVBVNVNAEBNENAEBNE
13 2 a1i GUHGraphE=EdgG
14 edgval EdgG=raniEdgG
15 14 a1i GUHGraphEdgG=raniEdgG
16 1 eqcomi iEdgG=I
17 16 a1i GUHGraphiEdgG=I
18 17 rneqd GUHGraphraniEdgG=ranI
19 13 15 18 3eqtrd GUHGraphE=ranI
20 19 eleq2d GUHGraphNAENAranI
21 19 eleq2d GUHGraphBNEBNranI
22 20 21 anbi12d GUHGraphNAEBNENAranIBNranI
23 1 uhgrfun GUHGraphFunI
24 23 funfnd GUHGraphIFndomI
25 fvelrnb IFndomINAranIxdomIIx=NA
26 fvelrnb IFndomIBNranIydomIIy=BN
27 25 26 anbi12d IFndomINAranIBNranIxdomIIx=NAydomIIy=BN
28 24 27 syl GUHGraphNAranIBNranIxdomIIx=NAydomIIy=BN
29 22 28 bitrd GUHGraphNAEBNExdomIIx=NAydomIIy=BN
30 29 ad2antrr GUHGraphABNVAVBVNVNAEBNExdomIIx=NAydomIIy=BN
31 reeanv xdomIydomIIx=NAIy=BNxdomIIx=NAydomIIy=BN
32 fveqeq2 x=yIx=NAIy=NA
33 32 anbi1d x=yIx=NAIy=BNIy=NAIy=BN
34 eqtr2 Iy=NAIy=BNNA=BN
35 prcom BN=NB
36 35 eqeq2i NA=BNNA=NB
37 preq12bg NVAVNVBVNA=NBN=NA=BN=BA=N
38 37 ancom2s NVAVBVNVNA=NBN=NA=BN=BA=N
39 eqneqall A=BABxy
40 39 adantl N=NA=BABxy
41 eqtr A=NN=BA=B
42 41 ancoms N=BA=NA=B
43 42 39 syl N=BA=NABxy
44 40 43 jaoi N=NA=BN=BA=NABxy
45 44 adantld N=NA=BN=BA=NGUHGraphABxy
46 38 45 syl6bi NVAVBVNVNA=NBGUHGraphABxy
47 46 com3l NA=NBGUHGraphABNVAVBVNVxy
48 47 impd NA=NBGUHGraphABNVAVBVNVxy
49 36 48 sylbi NA=BNGUHGraphABNVAVBVNVxy
50 34 49 syl Iy=NAIy=BNGUHGraphABNVAVBVNVxy
51 33 50 syl6bi x=yIx=NAIy=BNGUHGraphABNVAVBVNVxy
52 51 impcomd x=yGUHGraphABNVAVBVNVIx=NAIy=BNxy
53 ax-1 xyGUHGraphABNVAVBVNVIx=NAIy=BNxy
54 52 53 pm2.61ine GUHGraphABNVAVBVNVIx=NAIy=BNxy
55 prid1g NVNNA
56 55 ad2antrr NVAVBVNVNNA
57 56 adantl GUHGraphABNVAVBVNVNNA
58 eleq2 Ix=NANIxNNA
59 57 58 imbitrrid Ix=NAGUHGraphABNVAVBVNVNIx
60 59 adantr Ix=NAIy=BNGUHGraphABNVAVBVNVNIx
61 60 impcom GUHGraphABNVAVBVNVIx=NAIy=BNNIx
62 prid2g NVNBN
63 62 ad2antrr NVAVBVNVNBN
64 63 adantl GUHGraphABNVAVBVNVNBN
65 eleq2 Iy=BNNIyNBN
66 64 65 imbitrrid Iy=BNGUHGraphABNVAVBVNVNIy
67 66 adantl Ix=NAIy=BNGUHGraphABNVAVBVNVNIy
68 67 impcom GUHGraphABNVAVBVNVIx=NAIy=BNNIy
69 54 61 68 3jca GUHGraphABNVAVBVNVIx=NAIy=BNxyNIxNIy
70 69 ex GUHGraphABNVAVBVNVIx=NAIy=BNxyNIxNIy
71 70 reximdv GUHGraphABNVAVBVNVydomIIx=NAIy=BNydomIxyNIxNIy
72 71 reximdv GUHGraphABNVAVBVNVxdomIydomIIx=NAIy=BNxdomIydomIxyNIxNIy
73 31 72 biimtrrid GUHGraphABNVAVBVNVxdomIIx=NAydomIIy=BNxdomIydomIxyNIxNIy
74 30 73 sylbid GUHGraphABNVAVBVNVNAEBNExdomIydomIxyNIxNIy
75 11 12 74 sylc GUHGraphABAVBVNVNAEBNExdomIydomIxyNIxNIy