Metamath Proof Explorer


Theorem uncf1

Description: Value of the uncurry functor on an object. (Contributed by Mario Carneiro, 13-Jan-2017)

Ref Expression
Hypotheses uncfval.g F=⟨“CDE”⟩uncurryFG
uncfval.c φDCat
uncfval.d φECat
uncfval.f φGCFuncDFuncCatE
uncf1.a A=BaseC
uncf1.b B=BaseD
uncf1.x φXA
uncf1.y φYB
Assertion uncf1 φX1stFY=1st1stGXY

Proof

Step Hyp Ref Expression
1 uncfval.g F=⟨“CDE”⟩uncurryFG
2 uncfval.c φDCat
3 uncfval.d φECat
4 uncfval.f φGCFuncDFuncCatE
5 uncf1.a A=BaseC
6 uncf1.b B=BaseD
7 uncf1.x φXA
8 uncf1.y φYB
9 1 2 3 4 uncfval φF=DevalFEfuncGfuncC1stFD⟨,⟩FC2ndFD
10 9 fveq2d φ1stF=1stDevalFEfuncGfuncC1stFD⟨,⟩FC2ndFD
11 10 oveqd φX1stFY=X1stDevalFEfuncGfuncC1stFD⟨,⟩FC2ndFDY
12 df-ov X1stDevalFEfuncGfuncC1stFD⟨,⟩FC2ndFDY=1stDevalFEfuncGfuncC1stFD⟨,⟩FC2ndFDXY
13 eqid C×cD=C×cD
14 13 5 6 xpcbas A×B=BaseC×cD
15 eqid GfuncC1stFD⟨,⟩FC2ndFD=GfuncC1stFD⟨,⟩FC2ndFD
16 eqid DFuncCatE×cD=DFuncCatE×cD
17 funcrcl GCFuncDFuncCatECCatDFuncCatECat
18 4 17 syl φCCatDFuncCatECat
19 18 simpld φCCat
20 eqid C1stFD=C1stFD
21 13 19 2 20 1stfcl φC1stFDC×cDFuncC
22 21 4 cofucl φGfuncC1stFDC×cDFuncDFuncCatE
23 eqid C2ndFD=C2ndFD
24 13 19 2 23 2ndfcl φC2ndFDC×cDFuncD
25 15 16 22 24 prfcl φGfuncC1stFD⟨,⟩FC2ndFDC×cDFuncDFuncCatE×cD
26 eqid DevalFE=DevalFE
27 eqid DFuncCatE=DFuncCatE
28 26 27 2 3 evlfcl φDevalFEDFuncCatE×cDFuncE
29 7 8 opelxpd φXYA×B
30 14 25 28 29 cofu1 φ1stDevalFEfuncGfuncC1stFD⟨,⟩FC2ndFDXY=1stDevalFE1stGfuncC1stFD⟨,⟩FC2ndFDXY
31 12 30 eqtrid φX1stDevalFEfuncGfuncC1stFD⟨,⟩FC2ndFDY=1stDevalFE1stGfuncC1stFD⟨,⟩FC2ndFDXY
32 eqid HomC×cD=HomC×cD
33 15 14 32 22 24 29 prf1 φ1stGfuncC1stFD⟨,⟩FC2ndFDXY=1stGfuncC1stFDXY1stC2ndFDXY
34 14 21 4 29 cofu1 φ1stGfuncC1stFDXY=1stG1stC1stFDXY
35 13 14 32 19 2 20 29 1stf1 φ1stC1stFDXY=1stXY
36 op1stg XAYB1stXY=X
37 7 8 36 syl2anc φ1stXY=X
38 35 37 eqtrd φ1stC1stFDXY=X
39 38 fveq2d φ1stG1stC1stFDXY=1stGX
40 34 39 eqtrd φ1stGfuncC1stFDXY=1stGX
41 13 14 32 19 2 23 29 2ndf1 φ1stC2ndFDXY=2ndXY
42 op2ndg XAYB2ndXY=Y
43 7 8 42 syl2anc φ2ndXY=Y
44 41 43 eqtrd φ1stC2ndFDXY=Y
45 40 44 opeq12d φ1stGfuncC1stFDXY1stC2ndFDXY=1stGXY
46 33 45 eqtrd φ1stGfuncC1stFD⟨,⟩FC2ndFDXY=1stGXY
47 46 fveq2d φ1stDevalFE1stGfuncC1stFD⟨,⟩FC2ndFDXY=1stDevalFE1stGXY
48 df-ov 1stGX1stDevalFEY=1stDevalFE1stGXY
49 47 48 eqtr4di φ1stDevalFE1stGfuncC1stFD⟨,⟩FC2ndFDXY=1stGX1stDevalFEY
50 27 fucbas DFuncE=BaseDFuncCatE
51 relfunc RelCFuncDFuncCatE
52 1st2ndbr RelCFuncDFuncCatEGCFuncDFuncCatE1stGCFuncDFuncCatE2ndG
53 51 4 52 sylancr φ1stGCFuncDFuncCatE2ndG
54 5 50 53 funcf1 φ1stG:ADFuncE
55 54 7 ffvelcdmd φ1stGXDFuncE
56 26 2 3 6 55 8 evlf1 φ1stGX1stDevalFEY=1st1stGXY
57 49 56 eqtrd φ1stDevalFE1stGfuncC1stFD⟨,⟩FC2ndFDXY=1st1stGXY
58 11 31 57 3eqtrd φX1stFY=1st1stGXY