Description: Lemma for uniioombl . (Contributed by Mario Carneiro, 7-May-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | uniioombl.1 | |
|
uniioombl.2 | |
||
uniioombl.3 | |
||
uniioombl.a | |
||
uniioombl.e | |
||
uniioombl.c | |
||
uniioombl.g | |
||
uniioombl.s | |
||
uniioombl.t | |
||
uniioombl.v | |
||
Assertion | uniioombllem2a | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uniioombl.1 | |
|
2 | uniioombl.2 | |
|
3 | uniioombl.3 | |
|
4 | uniioombl.a | |
|
5 | uniioombl.e | |
|
6 | uniioombl.c | |
|
7 | uniioombl.g | |
|
8 | uniioombl.s | |
|
9 | uniioombl.t | |
|
10 | uniioombl.v | |
|
11 | 1 | adantr | |
12 | 11 | ffvelcdmda | |
13 | 12 | elin2d | |
14 | 1st2nd2 | |
|
15 | 13 14 | syl | |
16 | 15 | fveq2d | |
17 | df-ov | |
|
18 | 16 17 | eqtr4di | |
19 | 7 | ffvelcdmda | |
20 | 19 | elin2d | |
21 | 1st2nd2 | |
|
22 | 20 21 | syl | |
23 | 22 | fveq2d | |
24 | df-ov | |
|
25 | 23 24 | eqtr4di | |
26 | 25 | adantr | |
27 | 18 26 | ineq12d | |
28 | ovolfcl | |
|
29 | 11 28 | sylan | |
30 | 29 | simp1d | |
31 | 30 | rexrd | |
32 | 29 | simp2d | |
33 | 32 | rexrd | |
34 | ovolfcl | |
|
35 | 7 34 | sylan | |
36 | 35 | simp1d | |
37 | 36 | rexrd | |
38 | 37 | adantr | |
39 | 35 | simp2d | |
40 | 39 | rexrd | |
41 | 40 | adantr | |
42 | iooin | |
|
43 | 31 33 38 41 42 | syl22anc | |
44 | 27 43 | eqtrd | |
45 | ioorebas | |
|
46 | 44 45 | eqeltrdi | |