Metamath Proof Explorer


Theorem uniioombllem2a

Description: Lemma for uniioombl . (Contributed by Mario Carneiro, 7-May-2015)

Ref Expression
Hypotheses uniioombl.1 φF:2
uniioombl.2 φDisjx.Fx
uniioombl.3 S=seq1+absF
uniioombl.a A=ran.F
uniioombl.e φvol*E
uniioombl.c φC+
uniioombl.g φG:2
uniioombl.s φEran.G
uniioombl.t T=seq1+absG
uniioombl.v φsupranT*<vol*E+C
Assertion uniioombllem2a φJz.Fz.GJran.

Proof

Step Hyp Ref Expression
1 uniioombl.1 φF:2
2 uniioombl.2 φDisjx.Fx
3 uniioombl.3 S=seq1+absF
4 uniioombl.a A=ran.F
5 uniioombl.e φvol*E
6 uniioombl.c φC+
7 uniioombl.g φG:2
8 uniioombl.s φEran.G
9 uniioombl.t T=seq1+absG
10 uniioombl.v φsupranT*<vol*E+C
11 1 adantr φJF:2
12 11 ffvelcdmda φJzFz2
13 12 elin2d φJzFz2
14 1st2nd2 Fz2Fz=1stFz2ndFz
15 13 14 syl φJzFz=1stFz2ndFz
16 15 fveq2d φJz.Fz=.1stFz2ndFz
17 df-ov 1stFz2ndFz=.1stFz2ndFz
18 16 17 eqtr4di φJz.Fz=1stFz2ndFz
19 7 ffvelcdmda φJGJ2
20 19 elin2d φJGJ2
21 1st2nd2 GJ2GJ=1stGJ2ndGJ
22 20 21 syl φJGJ=1stGJ2ndGJ
23 22 fveq2d φJ.GJ=.1stGJ2ndGJ
24 df-ov 1stGJ2ndGJ=.1stGJ2ndGJ
25 23 24 eqtr4di φJ.GJ=1stGJ2ndGJ
26 25 adantr φJz.GJ=1stGJ2ndGJ
27 18 26 ineq12d φJz.Fz.GJ=1stFz2ndFz1stGJ2ndGJ
28 ovolfcl F:2z1stFz2ndFz1stFz2ndFz
29 11 28 sylan φJz1stFz2ndFz1stFz2ndFz
30 29 simp1d φJz1stFz
31 30 rexrd φJz1stFz*
32 29 simp2d φJz2ndFz
33 32 rexrd φJz2ndFz*
34 ovolfcl G:2J1stGJ2ndGJ1stGJ2ndGJ
35 7 34 sylan φJ1stGJ2ndGJ1stGJ2ndGJ
36 35 simp1d φJ1stGJ
37 36 rexrd φJ1stGJ*
38 37 adantr φJz1stGJ*
39 35 simp2d φJ2ndGJ
40 39 rexrd φJ2ndGJ*
41 40 adantr φJz2ndGJ*
42 iooin 1stFz*2ndFz*1stGJ*2ndGJ*1stFz2ndFz1stGJ2ndGJ=if1stFz1stGJ1stGJ1stFzif2ndFz2ndGJ2ndFz2ndGJ
43 31 33 38 41 42 syl22anc φJz1stFz2ndFz1stGJ2ndGJ=if1stFz1stGJ1stGJ1stFzif2ndFz2ndGJ2ndFz2ndGJ
44 27 43 eqtrd φJz.Fz.GJ=if1stFz1stGJ1stGJ1stFzif2ndFz2ndGJ2ndFz2ndGJ
45 ioorebas if1stFz1stGJ1stGJ1stFzif2ndFz2ndGJ2ndFz2ndGJran.
46 44 45 eqeltrdi φJz.Fz.GJran.