| Step |
Hyp |
Ref |
Expression |
| 1 |
|
unirep.1 |
|
| 2 |
|
unirep.2 |
|
| 3 |
|
unirep.3 |
|
| 4 |
|
unirep.4 |
|
| 5 |
|
unirep.5 |
|
| 6 |
|
eqidd |
|
| 7 |
6
|
ancli |
|
| 8 |
2
|
eqeq2d |
|
| 9 |
1 8
|
anbi12d |
|
| 10 |
9
|
rspcev |
|
| 11 |
7 10
|
sylan2 |
|
| 12 |
11
|
adantl |
|
| 13 |
|
nfcvd |
|
| 14 |
13 2
|
csbiegf |
|
| 15 |
5
|
csbex |
|
| 16 |
14 15
|
eqeltrrdi |
|
| 17 |
16
|
ad2antrl |
|
| 18 |
|
eqeq1 |
|
| 19 |
18
|
anbi2d |
|
| 20 |
19
|
rexbidv |
|
| 21 |
20
|
spcegv |
|
| 22 |
16 21
|
syl |
|
| 23 |
22
|
adantr |
|
| 24 |
11 23
|
mpd |
|
| 25 |
24
|
adantl |
|
| 26 |
|
r19.29 |
|
| 27 |
|
r19.29 |
|
| 28 |
|
an4 |
|
| 29 |
|
pm3.35 |
|
| 30 |
|
eqeq12 |
|
| 31 |
29 30
|
syl5ibrcom |
|
| 32 |
31
|
ancoms |
|
| 33 |
32
|
expimpd |
|
| 34 |
28 33
|
biimtrid |
|
| 35 |
34
|
ancomsd |
|
| 36 |
35
|
expdimp |
|
| 37 |
36
|
rexlimivw |
|
| 38 |
37
|
imp |
|
| 39 |
27 38
|
sylan |
|
| 40 |
39
|
an32s |
|
| 41 |
40
|
ex |
|
| 42 |
41
|
rexlimivw |
|
| 43 |
26 42
|
syl |
|
| 44 |
43
|
expimpd |
|
| 45 |
44
|
adantr |
|
| 46 |
45
|
alrimivv |
|
| 47 |
|
eqeq1 |
|
| 48 |
47
|
anbi2d |
|
| 49 |
48
|
rexbidv |
|
| 50 |
4
|
eqeq2d |
|
| 51 |
3 50
|
anbi12d |
|
| 52 |
51
|
cbvrexvw |
|
| 53 |
49 52
|
bitrdi |
|
| 54 |
53
|
eu4 |
|
| 55 |
25 46 54
|
sylanbrc |
|
| 56 |
20
|
iota2 |
|
| 57 |
17 55 56
|
syl2anc |
|
| 58 |
12 57
|
mpbid |
|