Description: Lemma for upgrres . (Contributed by AV, 27-Nov-2020) (Revised by AV, 19-Dec-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | upgrres.v | |
|
upgrres.e | |
||
upgrres.f | |
||
Assertion | upgrreslem | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | upgrres.v | |
|
2 | upgrres.e | |
|
3 | upgrres.f | |
|
4 | df-ima | |
|
5 | fveq2 | |
|
6 | neleq2 | |
|
7 | 5 6 | syl | |
8 | 7 3 | elrab2 | |
9 | 1 2 | upgrf | |
10 | ffvelcdm | |
|
11 | fveq2 | |
|
12 | 11 | breq1d | |
13 | 12 | elrab | |
14 | eldifsn | |
|
15 | simpl | |
|
16 | elpwi | |
|
17 | 16 | adantr | |
18 | simpr | |
|
19 | elpwdifsn | |
|
20 | 15 17 18 19 | syl3anc | |
21 | 20 | ex | |
22 | 21 | adantr | |
23 | 14 22 | sylbi | |
24 | 23 | adantr | |
25 | 24 | imp | |
26 | eldifsni | |
|
27 | 26 | adantr | |
28 | 27 | adantr | |
29 | eldifsn | |
|
30 | 25 28 29 | sylanbrc | |
31 | simpr | |
|
32 | 31 | adantr | |
33 | 12 30 32 | elrabd | |
34 | 33 | ex | |
35 | 34 | a1d | |
36 | 13 35 | sylbi | |
37 | 10 36 | syl | |
38 | 37 | ex | |
39 | 38 | com23 | |
40 | 9 39 | syl | |
41 | 40 | imp4b | |
42 | 8 41 | biimtrid | |
43 | 42 | ralrimiv | |
44 | upgruhgr | |
|
45 | 2 | uhgrfun | |
46 | 44 45 | syl | |
47 | 46 | adantr | |
48 | 3 | ssrab3 | |
49 | funimass4 | |
|
50 | 47 48 49 | sylancl | |
51 | 43 50 | mpbird | |
52 | 4 51 | eqsstrrid | |