Database
GRAPH THEORY
Undirected graphs
Examples for graphs
usgrexmplef
Next ⟩
usgrexmpllem
Metamath Proof Explorer
Ascii
Unicode
Theorem
usgrexmplef
Description:
Lemma for
usgrexmpl
.
(Contributed by
Alexander van der Vekens
, 15-Aug-2017)
Ref
Expression
Hypotheses
usgrexmplef.v
⊢
V
=
0
…
4
usgrexmplef.e
⊢
E
=
⟨“
0
1
1
2
2
0
0
3
”⟩
Assertion
usgrexmplef
⊢
E
:
dom
E
⟶
1-1
e
∈
𝒫
V
|
e
=
2
Proof
Step
Hyp
Ref
Expression
1
usgrexmplef.v
⊢
V
=
0
…
4
2
usgrexmplef.e
⊢
E
=
⟨“
0
1
1
2
2
0
0
3
”⟩
3
usgrexmpldifpr
⊢
0
1
≠
1
2
∧
0
1
≠
2
0
∧
0
1
≠
0
3
∧
1
2
≠
2
0
∧
1
2
≠
0
3
∧
2
0
≠
0
3
4
prex
⊢
0
1
∈
V
5
prex
⊢
1
2
∈
V
6
prex
⊢
2
0
∈
V
7
prex
⊢
0
3
∈
V
8
s4f1o
⊢
0
1
∈
V
∧
1
2
∈
V
∧
2
0
∈
V
∧
0
3
∈
V
→
0
1
≠
1
2
∧
0
1
≠
2
0
∧
0
1
≠
0
3
∧
1
2
≠
2
0
∧
1
2
≠
0
3
∧
2
0
≠
0
3
→
E
=
⟨“
0
1
1
2
2
0
0
3
”⟩
→
E
:
dom
E
⟶
1-1 onto
0
1
1
2
∪
2
0
0
3
9
4
5
6
7
8
mp4an
⊢
0
1
≠
1
2
∧
0
1
≠
2
0
∧
0
1
≠
0
3
∧
1
2
≠
2
0
∧
1
2
≠
0
3
∧
2
0
≠
0
3
→
E
=
⟨“
0
1
1
2
2
0
0
3
”⟩
→
E
:
dom
E
⟶
1-1 onto
0
1
1
2
∪
2
0
0
3
10
3
2
9
mp2
⊢
E
:
dom
E
⟶
1-1 onto
0
1
1
2
∪
2
0
0
3
11
f1of1
⊢
E
:
dom
E
⟶
1-1 onto
0
1
1
2
∪
2
0
0
3
→
E
:
dom
E
⟶
1-1
0
1
1
2
∪
2
0
0
3
12
id
⊢
ran
E
⊆
0
1
1
2
∪
2
0
0
3
→
ran
E
⊆
0
1
1
2
∪
2
0
0
3
13
vex
⊢
p
∈
V
14
13
elpr
⊢
p
∈
0
1
1
2
↔
p
=
0
1
∨
p
=
1
2
15
0nn0
⊢
0
∈
ℕ
0
16
4nn0
⊢
4
∈
ℕ
0
17
0re
⊢
0
∈
ℝ
18
4re
⊢
4
∈
ℝ
19
4pos
⊢
0
<
4
20
17
18
19
ltleii
⊢
0
≤
4
21
elfz2nn0
⊢
0
∈
0
…
4
↔
0
∈
ℕ
0
∧
4
∈
ℕ
0
∧
0
≤
4
22
15
16
20
21
mpbir3an
⊢
0
∈
0
…
4
23
22
1
eleqtrri
⊢
0
∈
V
24
1nn0
⊢
1
∈
ℕ
0
25
1re
⊢
1
∈
ℝ
26
1lt4
⊢
1
<
4
27
25
18
26
ltleii
⊢
1
≤
4
28
elfz2nn0
⊢
1
∈
0
…
4
↔
1
∈
ℕ
0
∧
4
∈
ℕ
0
∧
1
≤
4
29
24
16
27
28
mpbir3an
⊢
1
∈
0
…
4
30
29
1
eleqtrri
⊢
1
∈
V
31
prelpwi
⊢
0
∈
V
∧
1
∈
V
→
0
1
∈
𝒫
V
32
eleq1
⊢
p
=
0
1
→
p
∈
𝒫
V
↔
0
1
∈
𝒫
V
33
31
32
syl5ibrcom
⊢
0
∈
V
∧
1
∈
V
→
p
=
0
1
→
p
∈
𝒫
V
34
23
30
33
mp2an
⊢
p
=
0
1
→
p
∈
𝒫
V
35
fveq2
⊢
p
=
0
1
→
p
=
0
1
36
prhash2ex
⊢
0
1
=
2
37
35
36
eqtrdi
⊢
p
=
0
1
→
p
=
2
38
34
37
jca
⊢
p
=
0
1
→
p
∈
𝒫
V
∧
p
=
2
39
2nn0
⊢
2
∈
ℕ
0
40
2re
⊢
2
∈
ℝ
41
2lt4
⊢
2
<
4
42
40
18
41
ltleii
⊢
2
≤
4
43
elfz2nn0
⊢
2
∈
0
…
4
↔
2
∈
ℕ
0
∧
4
∈
ℕ
0
∧
2
≤
4
44
39
16
42
43
mpbir3an
⊢
2
∈
0
…
4
45
44
1
eleqtrri
⊢
2
∈
V
46
prelpwi
⊢
1
∈
V
∧
2
∈
V
→
1
2
∈
𝒫
V
47
eleq1
⊢
p
=
1
2
→
p
∈
𝒫
V
↔
1
2
∈
𝒫
V
48
46
47
syl5ibrcom
⊢
1
∈
V
∧
2
∈
V
→
p
=
1
2
→
p
∈
𝒫
V
49
30
45
48
mp2an
⊢
p
=
1
2
→
p
∈
𝒫
V
50
fveq2
⊢
p
=
1
2
→
p
=
1
2
51
1ne2
⊢
1
≠
2
52
1nn
⊢
1
∈
ℕ
53
2nn
⊢
2
∈
ℕ
54
hashprg
⊢
1
∈
ℕ
∧
2
∈
ℕ
→
1
≠
2
↔
1
2
=
2
55
52
53
54
mp2an
⊢
1
≠
2
↔
1
2
=
2
56
51
55
mpbi
⊢
1
2
=
2
57
50
56
eqtrdi
⊢
p
=
1
2
→
p
=
2
58
49
57
jca
⊢
p
=
1
2
→
p
∈
𝒫
V
∧
p
=
2
59
38
58
jaoi
⊢
p
=
0
1
∨
p
=
1
2
→
p
∈
𝒫
V
∧
p
=
2
60
14
59
sylbi
⊢
p
∈
0
1
1
2
→
p
∈
𝒫
V
∧
p
=
2
61
13
elpr
⊢
p
∈
2
0
0
3
↔
p
=
2
0
∨
p
=
0
3
62
prelpwi
⊢
2
∈
V
∧
0
∈
V
→
2
0
∈
𝒫
V
63
eleq1
⊢
p
=
2
0
→
p
∈
𝒫
V
↔
2
0
∈
𝒫
V
64
62
63
syl5ibrcom
⊢
2
∈
V
∧
0
∈
V
→
p
=
2
0
→
p
∈
𝒫
V
65
45
23
64
mp2an
⊢
p
=
2
0
→
p
∈
𝒫
V
66
fveq2
⊢
p
=
2
0
→
p
=
2
0
67
2ne0
⊢
2
≠
0
68
2z
⊢
2
∈
ℤ
69
0z
⊢
0
∈
ℤ
70
hashprg
⊢
2
∈
ℤ
∧
0
∈
ℤ
→
2
≠
0
↔
2
0
=
2
71
68
69
70
mp2an
⊢
2
≠
0
↔
2
0
=
2
72
67
71
mpbi
⊢
2
0
=
2
73
66
72
eqtrdi
⊢
p
=
2
0
→
p
=
2
74
65
73
jca
⊢
p
=
2
0
→
p
∈
𝒫
V
∧
p
=
2
75
3nn0
⊢
3
∈
ℕ
0
76
3re
⊢
3
∈
ℝ
77
3lt4
⊢
3
<
4
78
76
18
77
ltleii
⊢
3
≤
4
79
elfz2nn0
⊢
3
∈
0
…
4
↔
3
∈
ℕ
0
∧
4
∈
ℕ
0
∧
3
≤
4
80
75
16
78
79
mpbir3an
⊢
3
∈
0
…
4
81
80
1
eleqtrri
⊢
3
∈
V
82
prelpwi
⊢
0
∈
V
∧
3
∈
V
→
0
3
∈
𝒫
V
83
eleq1
⊢
p
=
0
3
→
p
∈
𝒫
V
↔
0
3
∈
𝒫
V
84
82
83
syl5ibrcom
⊢
0
∈
V
∧
3
∈
V
→
p
=
0
3
→
p
∈
𝒫
V
85
23
81
84
mp2an
⊢
p
=
0
3
→
p
∈
𝒫
V
86
fveq2
⊢
p
=
0
3
→
p
=
0
3
87
3ne0
⊢
3
≠
0
88
87
necomi
⊢
0
≠
3
89
3z
⊢
3
∈
ℤ
90
hashprg
⊢
0
∈
ℤ
∧
3
∈
ℤ
→
0
≠
3
↔
0
3
=
2
91
69
89
90
mp2an
⊢
0
≠
3
↔
0
3
=
2
92
88
91
mpbi
⊢
0
3
=
2
93
86
92
eqtrdi
⊢
p
=
0
3
→
p
=
2
94
85
93
jca
⊢
p
=
0
3
→
p
∈
𝒫
V
∧
p
=
2
95
74
94
jaoi
⊢
p
=
2
0
∨
p
=
0
3
→
p
∈
𝒫
V
∧
p
=
2
96
61
95
sylbi
⊢
p
∈
2
0
0
3
→
p
∈
𝒫
V
∧
p
=
2
97
60
96
jaoi
⊢
p
∈
0
1
1
2
∨
p
∈
2
0
0
3
→
p
∈
𝒫
V
∧
p
=
2
98
elun
⊢
p
∈
0
1
1
2
∪
2
0
0
3
↔
p
∈
0
1
1
2
∨
p
∈
2
0
0
3
99
fveqeq2
⊢
e
=
p
→
e
=
2
↔
p
=
2
100
99
elrab
⊢
p
∈
e
∈
𝒫
V
|
e
=
2
↔
p
∈
𝒫
V
∧
p
=
2
101
97
98
100
3imtr4i
⊢
p
∈
0
1
1
2
∪
2
0
0
3
→
p
∈
e
∈
𝒫
V
|
e
=
2
102
101
ssriv
⊢
0
1
1
2
∪
2
0
0
3
⊆
e
∈
𝒫
V
|
e
=
2
103
12
102
sstrdi
⊢
ran
E
⊆
0
1
1
2
∪
2
0
0
3
→
ran
E
⊆
e
∈
𝒫
V
|
e
=
2
104
103
anim2i
⊢
E
Fn
dom
E
∧
ran
E
⊆
0
1
1
2
∪
2
0
0
3
→
E
Fn
dom
E
∧
ran
E
⊆
e
∈
𝒫
V
|
e
=
2
105
df-f
⊢
E
:
dom
E
⟶
0
1
1
2
∪
2
0
0
3
↔
E
Fn
dom
E
∧
ran
E
⊆
0
1
1
2
∪
2
0
0
3
106
df-f
⊢
E
:
dom
E
⟶
e
∈
𝒫
V
|
e
=
2
↔
E
Fn
dom
E
∧
ran
E
⊆
e
∈
𝒫
V
|
e
=
2
107
104
105
106
3imtr4i
⊢
E
:
dom
E
⟶
0
1
1
2
∪
2
0
0
3
→
E
:
dom
E
⟶
e
∈
𝒫
V
|
e
=
2
108
107
anim1i
⊢
E
:
dom
E
⟶
0
1
1
2
∪
2
0
0
3
∧
∀
x
∃
*
y
y
E
x
→
E
:
dom
E
⟶
e
∈
𝒫
V
|
e
=
2
∧
∀
x
∃
*
y
y
E
x
109
dff12
⊢
E
:
dom
E
⟶
1-1
0
1
1
2
∪
2
0
0
3
↔
E
:
dom
E
⟶
0
1
1
2
∪
2
0
0
3
∧
∀
x
∃
*
y
y
E
x
110
dff12
⊢
E
:
dom
E
⟶
1-1
e
∈
𝒫
V
|
e
=
2
↔
E
:
dom
E
⟶
e
∈
𝒫
V
|
e
=
2
∧
∀
x
∃
*
y
y
E
x
111
108
109
110
3imtr4i
⊢
E
:
dom
E
⟶
1-1
0
1
1
2
∪
2
0
0
3
→
E
:
dom
E
⟶
1-1
e
∈
𝒫
V
|
e
=
2
112
10
11
111
mp2b
⊢
E
:
dom
E
⟶
1-1
e
∈
𝒫
V
|
e
=
2