Metamath Proof Explorer


Theorem usgrexmplef

Description: Lemma for usgrexmpl . (Contributed by Alexander van der Vekens, 15-Aug-2017)

Ref Expression
Hypotheses usgrexmplef.v V=04
usgrexmplef.e E=⟨“01122003”⟩
Assertion usgrexmplef E:domE1-1e𝒫V|e=2

Proof

Step Hyp Ref Expression
1 usgrexmplef.v V=04
2 usgrexmplef.e E=⟨“01122003”⟩
3 usgrexmpldifpr 011201200103122012032003
4 prex 01V
5 prex 12V
6 prex 20V
7 prex 03V
8 s4f1o 01V12V20V03V011201200103122012032003E=⟨“01122003”⟩E:domE1-1 onto01122003
9 4 5 6 7 8 mp4an 011201200103122012032003E=⟨“01122003”⟩E:domE1-1 onto01122003
10 3 2 9 mp2 E:domE1-1 onto01122003
11 f1of1 E:domE1-1 onto01122003E:domE1-101122003
12 id ranE01122003ranE01122003
13 vex pV
14 13 elpr p0112p=01p=12
15 0nn0 00
16 4nn0 40
17 0re 0
18 4re 4
19 4pos 0<4
20 17 18 19 ltleii 04
21 elfz2nn0 004004004
22 15 16 20 21 mpbir3an 004
23 22 1 eleqtrri 0V
24 1nn0 10
25 1re 1
26 1lt4 1<4
27 25 18 26 ltleii 14
28 elfz2nn0 104104014
29 24 16 27 28 mpbir3an 104
30 29 1 eleqtrri 1V
31 prelpwi 0V1V01𝒫V
32 eleq1 p=01p𝒫V01𝒫V
33 31 32 syl5ibrcom 0V1Vp=01p𝒫V
34 23 30 33 mp2an p=01p𝒫V
35 fveq2 p=01p=01
36 prhash2ex 01=2
37 35 36 eqtrdi p=01p=2
38 34 37 jca p=01p𝒫Vp=2
39 2nn0 20
40 2re 2
41 2lt4 2<4
42 40 18 41 ltleii 24
43 elfz2nn0 204204024
44 39 16 42 43 mpbir3an 204
45 44 1 eleqtrri 2V
46 prelpwi 1V2V12𝒫V
47 eleq1 p=12p𝒫V12𝒫V
48 46 47 syl5ibrcom 1V2Vp=12p𝒫V
49 30 45 48 mp2an p=12p𝒫V
50 fveq2 p=12p=12
51 1ne2 12
52 1nn 1
53 2nn 2
54 hashprg 121212=2
55 52 53 54 mp2an 1212=2
56 51 55 mpbi 12=2
57 50 56 eqtrdi p=12p=2
58 49 57 jca p=12p𝒫Vp=2
59 38 58 jaoi p=01p=12p𝒫Vp=2
60 14 59 sylbi p0112p𝒫Vp=2
61 13 elpr p2003p=20p=03
62 prelpwi 2V0V20𝒫V
63 eleq1 p=20p𝒫V20𝒫V
64 62 63 syl5ibrcom 2V0Vp=20p𝒫V
65 45 23 64 mp2an p=20p𝒫V
66 fveq2 p=20p=20
67 2ne0 20
68 2z 2
69 0z 0
70 hashprg 202020=2
71 68 69 70 mp2an 2020=2
72 67 71 mpbi 20=2
73 66 72 eqtrdi p=20p=2
74 65 73 jca p=20p𝒫Vp=2
75 3nn0 30
76 3re 3
77 3lt4 3<4
78 76 18 77 ltleii 34
79 elfz2nn0 304304034
80 75 16 78 79 mpbir3an 304
81 80 1 eleqtrri 3V
82 prelpwi 0V3V03𝒫V
83 eleq1 p=03p𝒫V03𝒫V
84 82 83 syl5ibrcom 0V3Vp=03p𝒫V
85 23 81 84 mp2an p=03p𝒫V
86 fveq2 p=03p=03
87 3ne0 30
88 87 necomi 03
89 3z 3
90 hashprg 030303=2
91 69 89 90 mp2an 0303=2
92 88 91 mpbi 03=2
93 86 92 eqtrdi p=03p=2
94 85 93 jca p=03p𝒫Vp=2
95 74 94 jaoi p=20p=03p𝒫Vp=2
96 61 95 sylbi p2003p𝒫Vp=2
97 60 96 jaoi p0112p2003p𝒫Vp=2
98 elun p01122003p0112p2003
99 fveqeq2 e=pe=2p=2
100 99 elrab pe𝒫V|e=2p𝒫Vp=2
101 97 98 100 3imtr4i p01122003pe𝒫V|e=2
102 101 ssriv 01122003e𝒫V|e=2
103 12 102 sstrdi ranE01122003ranEe𝒫V|e=2
104 103 anim2i EFndomEranE01122003EFndomEranEe𝒫V|e=2
105 df-f E:domE01122003EFndomEranE01122003
106 df-f E:domEe𝒫V|e=2EFndomEranEe𝒫V|e=2
107 104 105 106 3imtr4i E:domE01122003E:domEe𝒫V|e=2
108 107 anim1i E:domE01122003x*yyExE:domEe𝒫V|e=2x*yyEx
109 dff12 E:domE1-101122003E:domE01122003x*yyEx
110 dff12 E:domE1-1e𝒫V|e=2E:domEe𝒫V|e=2x*yyEx
111 108 109 110 3imtr4i E:domE1-101122003E:domE1-1e𝒫V|e=2
112 10 11 111 mp2b E:domE1-1e𝒫V|e=2