Metamath Proof Explorer


Theorem uzrest

Description: The restriction of the set of upper sets of integers to an upper set of integers is the set of upper sets of integers based at a point above the cutoff. (Contributed by Mario Carneiro, 13-Oct-2015)

Ref Expression
Hypothesis uzfbas.1 Z=M
Assertion uzrest Mran𝑡Z=Z

Proof

Step Hyp Ref Expression
1 uzfbas.1 Z=M
2 zex V
3 2 pwex 𝒫V
4 uzf :𝒫
5 frn :𝒫ran𝒫
6 4 5 ax-mp ran𝒫
7 3 6 ssexi ranV
8 1 fvexi ZV
9 restval ranVZVran𝑡Z=ranxranxZ
10 7 8 9 mp2an ran𝑡Z=ranxranxZ
11 1 ineq2i yZ=yM
12 uzin yMyM=ifyMMy
13 12 ancoms MyyM=ifyMMy
14 11 13 eqtrid MyyZ=ifyMMy
15 ffn :𝒫Fn
16 4 15 ax-mp Fn
17 uzssz M
18 1 17 eqsstri Z
19 ifcl MyifyMMy
20 uzid ifyMMyifyMMyifyMMy
21 19 20 syl MyifyMMyifyMMy
22 21 14 eleqtrrd MyifyMMyyZ
23 22 elin2d MyifyMMyZ
24 fnfvima FnZifyMMyZifyMMyZ
25 16 18 23 24 mp3an12i MyifyMMyZ
26 14 25 eqeltrd MyyZZ
27 26 ralrimiva MyyZZ
28 ineq1 x=yxZ=yZ
29 28 eleq1d x=yxZZyZZ
30 29 ralrn FnxranxZZyyZZ
31 16 30 ax-mp xranxZZyyZZ
32 27 31 sylibr MxranxZZ
33 eqid xranxZ=xranxZ
34 33 fmpt xranxZZxranxZ:ranZ
35 32 34 sylib MxranxZ:ranZ
36 35 frnd MranxranxZZ
37 10 36 eqsstrid Mran𝑡ZZ
38 1 uztrn2 xZyxyZ
39 38 ex xZyxyZ
40 39 ssrdv xZxZ
41 40 adantl MxZxZ
42 df-ss xZxZ=x
43 41 42 sylib MxZxZ=x
44 18 sseli xZx
45 44 adantl MxZx
46 fnfvelrn Fnxxran
47 16 45 46 sylancr MxZxran
48 elrestr ranVZVxranxZran𝑡Z
49 7 8 47 48 mp3an12i MxZxZran𝑡Z
50 43 49 eqeltrrd MxZxran𝑡Z
51 50 ralrimiva MxZxran𝑡Z
52 ffun :𝒫Fun
53 4 52 ax-mp Fun
54 4 fdmi dom=
55 18 54 sseqtrri Zdom
56 funimass4 FunZdomZran𝑡ZxZxran𝑡Z
57 53 55 56 mp2an Zran𝑡ZxZxran𝑡Z
58 51 57 sylibr MZran𝑡Z
59 37 58 eqssd Mran𝑡Z=Z