Metamath Proof Explorer


Theorem voliooicof

Description: The Lebesgue measure of open intervals is the same as the Lebesgue measure of left-closed right-open intervals. (Contributed by Glauco Siliprandi, 3-Mar-2021)

Ref Expression
Hypothesis voliooicof.1 φF:A2
Assertion voliooicof φvol.F=vol.F

Proof

Step Hyp Ref Expression
1 voliooicof.1 φF:A2
2 volioof vol.:*×*0+∞
3 2 a1i φvol.:*×*0+∞
4 rexpssxrxp 2*×*
5 4 a1i φ2*×*
6 3 5 1 fcoss φvol.F:A0+∞
7 6 ffnd φvol.FFnA
8 volf vol:domvol0+∞
9 8 a1i φvol:domvol0+∞
10 icof .:*×*𝒫*
11 10 a1i φ.:*×*𝒫*
12 11 5 1 fcoss φ.F:A𝒫*
13 12 ffnd φ.FFnA
14 1 adantr φxAF:A2
15 simpr φxAxA
16 14 15 fvovco φxA.Fx=1stFx2ndFx
17 1 ffvelcdmda φxAFx2
18 xp1st Fx21stFx
19 17 18 syl φxA1stFx
20 xp2nd Fx22ndFx
21 17 20 syl φxA2ndFx
22 21 rexrd φxA2ndFx*
23 icombl 1stFx2ndFx*1stFx2ndFxdomvol
24 19 22 23 syl2anc φxA1stFx2ndFxdomvol
25 16 24 eqeltrd φxA.Fxdomvol
26 25 ralrimiva φxA.Fxdomvol
27 13 26 jca φ.FFnAxA.Fxdomvol
28 ffnfv .F:Adomvol.FFnAxA.Fxdomvol
29 27 28 sylibr φ.F:Adomvol
30 fco vol:domvol0+∞.F:Adomvolvol.F:A0+∞
31 9 29 30 syl2anc φvol.F:A0+∞
32 coass vol.F=vol.F
33 32 a1i φvol.F=vol.F
34 33 feq1d φvol.F:A0+∞vol.F:A0+∞
35 31 34 mpbird φvol.F:A0+∞
36 35 ffnd φvol.FFnA
37 19 21 voliooico φxAvol1stFx2ndFx=vol1stFx2ndFx
38 1 5 fssd φF:A*×*
39 38 adantr φxAF:A*×*
40 39 15 fvvolioof φxAvol.Fx=vol1stFx2ndFx
41 39 15 fvvolicof φxAvol.Fx=vol1stFx2ndFx
42 37 40 41 3eqtr4d φxAvol.Fx=vol.Fx
43 7 36 42 eqfnfvd φvol.F=vol.F