Metamath Proof Explorer


Theorem vonicclem1

Description: The sequence of the measures of the half-open intervals converges to the measure of their intersection. (Contributed by Glauco Siliprandi, 8-Apr-2021)

Ref Expression
Hypotheses vonicclem1.x φ X Fin
vonicclem1.a φ A : X
vonicclem1.b φ B : X
vonicclem1.u φ X
vonicclem1.t φ k X A k B k
vonicclem1.c C = n k X B k + 1 n
vonicclem1.d D = n k X A k C n k
vonicclem1.s S = n voln X D n
Assertion vonicclem1 φ S k X B k A k

Proof

Step Hyp Ref Expression
1 vonicclem1.x φ X Fin
2 vonicclem1.a φ A : X
3 vonicclem1.b φ B : X
4 vonicclem1.u φ X
5 vonicclem1.t φ k X A k B k
6 vonicclem1.c C = n k X B k + 1 n
7 vonicclem1.d D = n k X A k C n k
8 vonicclem1.s S = n voln X D n
9 8 a1i φ S = n voln X D n
10 simpr φ n n
11 7 a1i φ D = n k X A k C n k
12 1 adantr φ n X Fin
13 eqid dom voln X = dom voln X
14 2 adantr φ n A : X
15 3 ffvelrnda φ k X B k
16 15 adantlr φ n k X B k
17 nnrecre n 1 n
18 17 ad2antlr φ n k X 1 n
19 16 18 readdcld φ n k X B k + 1 n
20 19 fmpttd φ n k X B k + 1 n : X
21 6 a1i φ C = n k X B k + 1 n
22 1 mptexd φ k X B k + 1 n V
23 22 adantr φ n k X B k + 1 n V
24 21 23 fvmpt2d φ n C n = k X B k + 1 n
25 24 feq1d φ n C n : X k X B k + 1 n : X
26 20 25 mpbird φ n C n : X
27 12 13 14 26 hoimbl φ n k X A k C n k dom voln X
28 27 elexd φ n k X A k C n k V
29 11 28 fvmpt2d φ n D n = k X A k C n k
30 10 29 syldan φ n D n = k X A k C n k
31 30 fveq2d φ n voln X D n = voln X k X A k C n k
32 4 adantr φ n X
33 10 26 syldan φ n C n : X
34 eqid k X A k C n k = k X A k C n k
35 12 32 14 33 34 vonn0hoi φ n voln X k X A k C n k = k X vol A k C n k
36 14 ffvelrnda φ n k X A k
37 10 36 syldanl φ n k X A k
38 33 ffvelrnda φ n k X C n k
39 volico A k C n k vol A k C n k = if A k < C n k C n k A k 0
40 37 38 39 syl2anc φ n k X vol A k C n k = if A k < C n k C n k A k 0
41 10 16 syldanl φ n k X B k
42 5 adantlr φ n k X A k B k
43 nnrp n n +
44 43 rpreccld n 1 n +
45 44 ad2antlr φ n k X 1 n +
46 41 45 ltaddrpd φ n k X B k < B k + 1 n
47 19 elexd φ n k X B k + 1 n V
48 24 47 fvmpt2d φ n k X C n k = B k + 1 n
49 10 48 syldanl φ n k X C n k = B k + 1 n
50 46 49 breqtrrd φ n k X B k < C n k
51 37 41 38 42 50 lelttrd φ n k X A k < C n k
52 51 iftrued φ n k X if A k < C n k C n k A k 0 = C n k A k
53 40 52 eqtrd φ n k X vol A k C n k = C n k A k
54 53 prodeq2dv φ n k X vol A k C n k = k X C n k A k
55 31 35 54 3eqtrd φ n voln X D n = k X C n k A k
56 48 oveq1d φ n k X C n k A k = B k + 1 n - A k
57 16 recnd φ n k X B k
58 18 recnd φ n k X 1 n
59 36 recnd φ n k X A k
60 57 58 59 addsubd φ n k X B k + 1 n - A k = B k - A k + 1 n
61 56 60 eqtrd φ n k X C n k A k = B k - A k + 1 n
62 61 prodeq2dv φ n k X C n k A k = k X B k - A k + 1 n
63 55 62 eqtrd φ n voln X D n = k X B k - A k + 1 n
64 63 mpteq2dva φ n voln X D n = n k X B k - A k + 1 n
65 9 64 eqtrd φ S = n k X B k - A k + 1 n
66 nfv k φ
67 2 ffvelrnda φ k X A k
68 15 67 resubcld φ k X B k A k
69 68 recnd φ k X B k A k
70 eqid n k X B k - A k + 1 n = n k X B k - A k + 1 n
71 66 1 69 70 fprodaddrecnncnv φ n k X B k - A k + 1 n k X B k A k
72 65 71 eqbrtrd φ S k X B k A k