Metamath Proof Explorer


Theorem wlk1walk

Description: A walk is a 1-walk "on the edge level" according to Aksoy et al. (Contributed by AV, 30-Dec-2020)

Ref Expression
Hypothesis wlk1walk.i I=iEdgG
Assertion wlk1walk FWalksGPk1..^F1IFk1IFk

Proof

Step Hyp Ref Expression
1 wlk1walk.i I=iEdgG
2 wlkv FWalksGPGVFVPV
3 eqid VtxG=VtxG
4 eqid iEdgG=iEdgG
5 3 4 iswlk GVFVPVFWalksGPFWorddomiEdgGP:0FVtxGi0..^Fif-Pi=Pi+1iEdgGFi=PiPiPi+1iEdgGFi
6 fvex IFk1V
7 6 inex1 IFk1IFkV
8 fzo0ss1 1..^F0..^F
9 8 sseli k1..^Fk0..^F
10 wkslem1 i=kif-Pi=Pi+1iEdgGFi=PiPiPi+1iEdgGFiif-Pk=Pk+1iEdgGFk=PkPkPk+1iEdgGFk
11 10 rspcv k0..^Fi0..^Fif-Pi=Pi+1iEdgGFi=PiPiPi+1iEdgGFiif-Pk=Pk+1iEdgGFk=PkPkPk+1iEdgGFk
12 9 11 syl k1..^Fi0..^Fif-Pi=Pi+1iEdgGFi=PiPiPi+1iEdgGFiif-Pk=Pk+1iEdgGFk=PkPkPk+1iEdgGFk
13 12 imp k1..^Fi0..^Fif-Pi=Pi+1iEdgGFi=PiPiPi+1iEdgGFiif-Pk=Pk+1iEdgGFk=PkPkPk+1iEdgGFk
14 elfzofz k1..^Fk1F
15 fz1fzo0m1 k1Fk10..^F
16 wkslem1 i=k1if-Pi=Pi+1iEdgGFi=PiPiPi+1iEdgGFiif-Pk1=Pk-1+1iEdgGFk1=Pk1Pk1Pk-1+1iEdgGFk1
17 16 rspcv k10..^Fi0..^Fif-Pi=Pi+1iEdgGFi=PiPiPi+1iEdgGFiif-Pk1=Pk-1+1iEdgGFk1=Pk1Pk1Pk-1+1iEdgGFk1
18 14 15 17 3syl k1..^Fi0..^Fif-Pi=Pi+1iEdgGFi=PiPiPi+1iEdgGFiif-Pk1=Pk-1+1iEdgGFk1=Pk1Pk1Pk-1+1iEdgGFk1
19 18 imp k1..^Fi0..^Fif-Pi=Pi+1iEdgGFi=PiPiPi+1iEdgGFiif-Pk1=Pk-1+1iEdgGFk1=Pk1Pk1Pk-1+1iEdgGFk1
20 df-ifp if-Pk=Pk+1iEdgGFk=PkPkPk+1iEdgGFkPk=Pk+1iEdgGFk=Pk¬Pk=Pk+1PkPk+1iEdgGFk
21 elfzoelz k1..^Fk
22 zcn kk
23 eqidd kk1=k1
24 npcan1 kk-1+1=k
25 wkslem2 k1=k1k-1+1=kif-Pk1=Pk-1+1iEdgGFk1=Pk1Pk1Pk-1+1iEdgGFk1if-Pk1=PkiEdgGFk1=Pk1Pk1PkiEdgGFk1
26 23 24 25 syl2anc kif-Pk1=Pk-1+1iEdgGFk1=Pk1Pk1Pk-1+1iEdgGFk1if-Pk1=PkiEdgGFk1=Pk1Pk1PkiEdgGFk1
27 21 22 26 3syl k1..^Fif-Pk1=Pk-1+1iEdgGFk1=Pk1Pk1Pk-1+1iEdgGFk1if-Pk1=PkiEdgGFk1=Pk1Pk1PkiEdgGFk1
28 df-ifp if-Pk1=PkiEdgGFk1=Pk1Pk1PkiEdgGFk1Pk1=PkiEdgGFk1=Pk1¬Pk1=PkPk1PkiEdgGFk1
29 sneq Pk1=PkPk1=Pk
30 29 eqeq2d Pk1=PkiEdgGFk1=Pk1iEdgGFk1=Pk
31 fvex PkV
32 31 snid PkPk
33 1 fveq1i IFk1=iEdgGFk1
34 33 eleq2i PkIFk1PkiEdgGFk1
35 eleq2 iEdgGFk1=PkPkiEdgGFk1PkPk
36 34 35 bitrid iEdgGFk1=PkPkIFk1PkPk
37 32 36 mpbiri iEdgGFk1=PkPkIFk1
38 eleq2 iEdgGFk=PkPkiEdgGFkPkPk
39 32 38 mpbiri iEdgGFk=PkPkiEdgGFk
40 1 fveq1i IFk=iEdgGFk
41 39 40 eleqtrrdi iEdgGFk=PkPkIFk
42 37 41 anim12i iEdgGFk1=PkiEdgGFk=PkPkIFk1PkIFk
43 42 ex iEdgGFk1=PkiEdgGFk=PkPkIFk1PkIFk
44 30 43 syl6bi Pk1=PkiEdgGFk1=Pk1iEdgGFk=PkPkIFk1PkIFk
45 44 imp Pk1=PkiEdgGFk1=Pk1iEdgGFk=PkPkIFk1PkIFk
46 45 com12 iEdgGFk=PkPk1=PkiEdgGFk1=Pk1PkIFk1PkIFk
47 46 adantl Pk=Pk+1iEdgGFk=PkPk1=PkiEdgGFk1=Pk1PkIFk1PkIFk
48 fvex Pk+1V
49 31 48 prss PkiEdgGFkPk+1iEdgGFkPkPk+1iEdgGFk
50 1 eqcomi iEdgG=I
51 50 fveq1i iEdgGFk=IFk
52 51 eleq2i PkiEdgGFkPkIFk
53 52 biimpi PkiEdgGFkPkIFk
54 53 adantr PkiEdgGFkPk+1iEdgGFkPkIFk
55 49 54 sylbir PkPk+1iEdgGFkPkIFk
56 37 55 anim12i iEdgGFk1=PkPkPk+1iEdgGFkPkIFk1PkIFk
57 56 ex iEdgGFk1=PkPkPk+1iEdgGFkPkIFk1PkIFk
58 30 57 syl6bi Pk1=PkiEdgGFk1=Pk1PkPk+1iEdgGFkPkIFk1PkIFk
59 58 imp Pk1=PkiEdgGFk1=Pk1PkPk+1iEdgGFkPkIFk1PkIFk
60 59 com12 PkPk+1iEdgGFkPk1=PkiEdgGFk1=Pk1PkIFk1PkIFk
61 60 adantl ¬Pk=Pk+1PkPk+1iEdgGFkPk1=PkiEdgGFk1=Pk1PkIFk1PkIFk
62 47 61 jaoi Pk=Pk+1iEdgGFk=Pk¬Pk=Pk+1PkPk+1iEdgGFkPk1=PkiEdgGFk1=Pk1PkIFk1PkIFk
63 62 com12 Pk1=PkiEdgGFk1=Pk1Pk=Pk+1iEdgGFk=Pk¬Pk=Pk+1PkPk+1iEdgGFkPkIFk1PkIFk
64 fvex Pk1V
65 64 31 prss Pk1iEdgGFk1PkiEdgGFk1Pk1PkiEdgGFk1
66 50 fveq1i iEdgGFk1=IFk1
67 66 eleq2i PkiEdgGFk1PkIFk1
68 67 biimpi PkiEdgGFk1PkIFk1
69 40 eleq2i PkIFkPkiEdgGFk
70 69 38 bitrid iEdgGFk=PkPkIFkPkPk
71 32 70 mpbiri iEdgGFk=PkPkIFk
72 68 71 anim12i PkiEdgGFk1iEdgGFk=PkPkIFk1PkIFk
73 72 ex PkiEdgGFk1iEdgGFk=PkPkIFk1PkIFk
74 73 adantl Pk1iEdgGFk1PkiEdgGFk1iEdgGFk=PkPkIFk1PkIFk
75 65 74 sylbir Pk1PkiEdgGFk1iEdgGFk=PkPkIFk1PkIFk
76 75 adantl ¬Pk1=PkPk1PkiEdgGFk1iEdgGFk=PkPkIFk1PkIFk
77 76 com12 iEdgGFk=Pk¬Pk1=PkPk1PkiEdgGFk1PkIFk1PkIFk
78 77 adantl Pk=Pk+1iEdgGFk=Pk¬Pk1=PkPk1PkiEdgGFk1PkIFk1PkIFk
79 67 52 anbi12i PkiEdgGFk1PkiEdgGFkPkIFk1PkIFk
80 79 biimpi PkiEdgGFk1PkiEdgGFkPkIFk1PkIFk
81 80 ex PkiEdgGFk1PkiEdgGFkPkIFk1PkIFk
82 81 adantl Pk1iEdgGFk1PkiEdgGFk1PkiEdgGFkPkIFk1PkIFk
83 65 82 sylbir Pk1PkiEdgGFk1PkiEdgGFkPkIFk1PkIFk
84 83 adantl ¬Pk1=PkPk1PkiEdgGFk1PkiEdgGFkPkIFk1PkIFk
85 84 com12 PkiEdgGFk¬Pk1=PkPk1PkiEdgGFk1PkIFk1PkIFk
86 85 adantr PkiEdgGFkPk+1iEdgGFk¬Pk1=PkPk1PkiEdgGFk1PkIFk1PkIFk
87 49 86 sylbir PkPk+1iEdgGFk¬Pk1=PkPk1PkiEdgGFk1PkIFk1PkIFk
88 87 adantl ¬Pk=Pk+1PkPk+1iEdgGFk¬Pk1=PkPk1PkiEdgGFk1PkIFk1PkIFk
89 78 88 jaoi Pk=Pk+1iEdgGFk=Pk¬Pk=Pk+1PkPk+1iEdgGFk¬Pk1=PkPk1PkiEdgGFk1PkIFk1PkIFk
90 89 com12 ¬Pk1=PkPk1PkiEdgGFk1Pk=Pk+1iEdgGFk=Pk¬Pk=Pk+1PkPk+1iEdgGFkPkIFk1PkIFk
91 63 90 jaoi Pk1=PkiEdgGFk1=Pk1¬Pk1=PkPk1PkiEdgGFk1Pk=Pk+1iEdgGFk=Pk¬Pk=Pk+1PkPk+1iEdgGFkPkIFk1PkIFk
92 28 91 sylbi if-Pk1=PkiEdgGFk1=Pk1Pk1PkiEdgGFk1Pk=Pk+1iEdgGFk=Pk¬Pk=Pk+1PkPk+1iEdgGFkPkIFk1PkIFk
93 27 92 syl6bi k1..^Fif-Pk1=Pk-1+1iEdgGFk1=Pk1Pk1Pk-1+1iEdgGFk1Pk=Pk+1iEdgGFk=Pk¬Pk=Pk+1PkPk+1iEdgGFkPkIFk1PkIFk
94 93 com3r Pk=Pk+1iEdgGFk=Pk¬Pk=Pk+1PkPk+1iEdgGFkk1..^Fif-Pk1=Pk-1+1iEdgGFk1=Pk1Pk1Pk-1+1iEdgGFk1PkIFk1PkIFk
95 20 94 sylbi if-Pk=Pk+1iEdgGFk=PkPkPk+1iEdgGFkk1..^Fif-Pk1=Pk-1+1iEdgGFk1=Pk1Pk1Pk-1+1iEdgGFk1PkIFk1PkIFk
96 95 com12 k1..^Fif-Pk=Pk+1iEdgGFk=PkPkPk+1iEdgGFkif-Pk1=Pk-1+1iEdgGFk1=Pk1Pk1Pk-1+1iEdgGFk1PkIFk1PkIFk
97 96 adantr k1..^Fi0..^Fif-Pi=Pi+1iEdgGFi=PiPiPi+1iEdgGFiif-Pk=Pk+1iEdgGFk=PkPkPk+1iEdgGFkif-Pk1=Pk-1+1iEdgGFk1=Pk1Pk1Pk-1+1iEdgGFk1PkIFk1PkIFk
98 13 19 97 mp2d k1..^Fi0..^Fif-Pi=Pi+1iEdgGFi=PiPiPi+1iEdgGFiPkIFk1PkIFk
99 98 ancoms i0..^Fif-Pi=Pi+1iEdgGFi=PiPiPi+1iEdgGFik1..^FPkIFk1PkIFk
100 inelcm PkIFk1PkIFkIFk1IFk
101 99 100 syl i0..^Fif-Pi=Pi+1iEdgGFi=PiPiPi+1iEdgGFik1..^FIFk1IFk
102 hashge1 IFk1IFkVIFk1IFk1IFk1IFk
103 7 101 102 sylancr i0..^Fif-Pi=Pi+1iEdgGFi=PiPiPi+1iEdgGFik1..^F1IFk1IFk
104 103 ralrimiva i0..^Fif-Pi=Pi+1iEdgGFi=PiPiPi+1iEdgGFik1..^F1IFk1IFk
105 104 3ad2ant3 FWorddomiEdgGP:0FVtxGi0..^Fif-Pi=Pi+1iEdgGFi=PiPiPi+1iEdgGFik1..^F1IFk1IFk
106 5 105 syl6bi GVFVPVFWalksGPk1..^F1IFk1IFk
107 2 106 mpcom FWalksGPk1..^F1IFk1IFk