Metamath Proof Explorer


Theorem xkoopn

Description: A basic open set of the compact-open topology. (Contributed by Mario Carneiro, 19-Mar-2015)

Ref Expression
Hypotheses xkoopn.x X=R
xkoopn.r φRTop
xkoopn.s φSTop
xkoopn.a φAX
xkoopn.c φR𝑡AComp
xkoopn.u φUS
Assertion xkoopn φfRCnS|fAUS^koR

Proof

Step Hyp Ref Expression
1 xkoopn.x X=R
2 xkoopn.r φRTop
3 xkoopn.s φSTop
4 xkoopn.a φAX
5 xkoopn.c φR𝑡AComp
6 xkoopn.u φUS
7 ovex RCnSV
8 7 pwex 𝒫RCnSV
9 eqid x𝒫X|R𝑡xComp=x𝒫X|R𝑡xComp
10 eqid kx𝒫X|R𝑡xComp,vSfRCnS|fkv=kx𝒫X|R𝑡xComp,vSfRCnS|fkv
11 1 9 10 xkotf kx𝒫X|R𝑡xComp,vSfRCnS|fkv:x𝒫X|R𝑡xComp×S𝒫RCnS
12 frn kx𝒫X|R𝑡xComp,vSfRCnS|fkv:x𝒫X|R𝑡xComp×S𝒫RCnSrankx𝒫X|R𝑡xComp,vSfRCnS|fkv𝒫RCnS
13 11 12 ax-mp rankx𝒫X|R𝑡xComp,vSfRCnS|fkv𝒫RCnS
14 8 13 ssexi rankx𝒫X|R𝑡xComp,vSfRCnS|fkvV
15 ssfii rankx𝒫X|R𝑡xComp,vSfRCnS|fkvVrankx𝒫X|R𝑡xComp,vSfRCnS|fkvfirankx𝒫X|R𝑡xComp,vSfRCnS|fkv
16 14 15 ax-mp rankx𝒫X|R𝑡xComp,vSfRCnS|fkvfirankx𝒫X|R𝑡xComp,vSfRCnS|fkv
17 fvex firankx𝒫X|R𝑡xComp,vSfRCnS|fkvV
18 bastg firankx𝒫X|R𝑡xComp,vSfRCnS|fkvVfirankx𝒫X|R𝑡xComp,vSfRCnS|fkvtopGenfirankx𝒫X|R𝑡xComp,vSfRCnS|fkv
19 17 18 ax-mp firankx𝒫X|R𝑡xComp,vSfRCnS|fkvtopGenfirankx𝒫X|R𝑡xComp,vSfRCnS|fkv
20 16 19 sstri rankx𝒫X|R𝑡xComp,vSfRCnS|fkvtopGenfirankx𝒫X|R𝑡xComp,vSfRCnS|fkv
21 oveq2 x=AR𝑡x=R𝑡A
22 21 eleq1d x=AR𝑡xCompR𝑡AComp
23 1 topopn RTopXR
24 elpw2g XRA𝒫XAX
25 2 23 24 3syl φA𝒫XAX
26 4 25 mpbird φA𝒫X
27 22 26 5 elrabd φAx𝒫X|R𝑡xComp
28 eqidd φfRCnS|fAU=fRCnS|fAU
29 imaeq2 k=Afk=fA
30 29 sseq1d k=AfkvfAv
31 30 rabbidv k=AfRCnS|fkv=fRCnS|fAv
32 31 eqeq2d k=AfRCnS|fAU=fRCnS|fkvfRCnS|fAU=fRCnS|fAv
33 sseq2 v=UfAvfAU
34 33 rabbidv v=UfRCnS|fAv=fRCnS|fAU
35 34 eqeq2d v=UfRCnS|fAU=fRCnS|fAvfRCnS|fAU=fRCnS|fAU
36 32 35 rspc2ev Ax𝒫X|R𝑡xCompUSfRCnS|fAU=fRCnS|fAUkx𝒫X|R𝑡xCompvSfRCnS|fAU=fRCnS|fkv
37 27 6 28 36 syl3anc φkx𝒫X|R𝑡xCompvSfRCnS|fAU=fRCnS|fkv
38 7 rabex fRCnS|fAUV
39 eqeq1 y=fRCnS|fAUy=fRCnS|fkvfRCnS|fAU=fRCnS|fkv
40 39 2rexbidv y=fRCnS|fAUkx𝒫X|R𝑡xCompvSy=fRCnS|fkvkx𝒫X|R𝑡xCompvSfRCnS|fAU=fRCnS|fkv
41 10 rnmpo rankx𝒫X|R𝑡xComp,vSfRCnS|fkv=y|kx𝒫X|R𝑡xCompvSy=fRCnS|fkv
42 38 40 41 elab2 fRCnS|fAUrankx𝒫X|R𝑡xComp,vSfRCnS|fkvkx𝒫X|R𝑡xCompvSfRCnS|fAU=fRCnS|fkv
43 37 42 sylibr φfRCnS|fAUrankx𝒫X|R𝑡xComp,vSfRCnS|fkv
44 20 43 sselid φfRCnS|fAUtopGenfirankx𝒫X|R𝑡xComp,vSfRCnS|fkv
45 1 9 10 xkoval RTopSTopS^koR=topGenfirankx𝒫X|R𝑡xComp,vSfRCnS|fkv
46 2 3 45 syl2anc φS^koR=topGenfirankx𝒫X|R𝑡xComp,vSfRCnS|fkv
47 44 46 eleqtrrd φfRCnS|fAUS^koR