Description: A basic open set of the compact-open topology. (Contributed by Mario Carneiro, 19-Mar-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | xkoopn.x | |
|
xkoopn.r | |
||
xkoopn.s | |
||
xkoopn.a | |
||
xkoopn.c | |
||
xkoopn.u | |
||
Assertion | xkoopn | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xkoopn.x | |
|
2 | xkoopn.r | |
|
3 | xkoopn.s | |
|
4 | xkoopn.a | |
|
5 | xkoopn.c | |
|
6 | xkoopn.u | |
|
7 | ovex | |
|
8 | 7 | pwex | |
9 | eqid | |
|
10 | eqid | |
|
11 | 1 9 10 | xkotf | |
12 | frn | |
|
13 | 11 12 | ax-mp | |
14 | 8 13 | ssexi | |
15 | ssfii | |
|
16 | 14 15 | ax-mp | |
17 | fvex | |
|
18 | bastg | |
|
19 | 17 18 | ax-mp | |
20 | 16 19 | sstri | |
21 | oveq2 | |
|
22 | 21 | eleq1d | |
23 | 1 | topopn | |
24 | elpw2g | |
|
25 | 2 23 24 | 3syl | |
26 | 4 25 | mpbird | |
27 | 22 26 5 | elrabd | |
28 | eqidd | |
|
29 | imaeq2 | |
|
30 | 29 | sseq1d | |
31 | 30 | rabbidv | |
32 | 31 | eqeq2d | |
33 | sseq2 | |
|
34 | 33 | rabbidv | |
35 | 34 | eqeq2d | |
36 | 32 35 | rspc2ev | |
37 | 27 6 28 36 | syl3anc | |
38 | 7 | rabex | |
39 | eqeq1 | |
|
40 | 39 | 2rexbidv | |
41 | 10 | rnmpo | |
42 | 38 40 41 | elab2 | |
43 | 37 42 | sylibr | |
44 | 20 43 | sselid | |
45 | 1 9 10 | xkoval | |
46 | 2 3 45 | syl2anc | |
47 | 44 46 | eleqtrrd | |