Metamath Proof Explorer


Theorem xlimmnfvlem2

Description: Lemma for xlimmnf : the "if" part of the biconditional. (Contributed by Glauco Siliprandi, 5-Feb-2022)

Ref Expression
Hypotheses xlimmnfvlem2.k kφ
xlimmnfvlem2.j jφ
xlimmnfvlem2.m φM
xlimmnfvlem2.z Z=M
xlimmnfvlem2.f φF:Z*
xlimmnfvlem2.g φxjZkjFk<x
Assertion xlimmnfvlem2 φF*−∞

Proof

Step Hyp Ref Expression
1 xlimmnfvlem2.k kφ
2 xlimmnfvlem2.j jφ
3 xlimmnfvlem2.m φM
4 xlimmnfvlem2.z Z=M
5 xlimmnfvlem2.f φF:Z*
6 xlimmnfvlem2.g φxjZkjFk<x
7 letopon ordTopTopOn*
8 7 a1i φordTopTopOn*
9 8 elfvexd φ*V
10 cnex V
11 10 a1i φV
12 4 uzsscn2 Z
13 12 a1i φZ
14 elpm2r *VVF:Z*ZF*𝑝𝑚
15 9 11 5 13 14 syl22anc φF*𝑝𝑚
16 mnfxr −∞*
17 16 a1i φ−∞*
18 mnfnei uordTop−∞ux−∞xu
19 18 adantll φuordTop−∞ux−∞xu
20 nfv jx
21 2 20 nfan jφx
22 nfv j−∞xu
23 21 22 nfan jφx−∞xu
24 simprr φx−∞xujZkjFk<xkjFk<x
25 nfv kx
26 1 25 nfan kφx
27 nfv k−∞xu
28 26 27 nfan kφx−∞xu
29 nfv kjZ
30 28 29 nfan kφx−∞xujZ
31 4 uztrn2 jZkjkZ
32 31 3adant1 φjZkjkZ
33 5 fdmd φdomF=Z
34 33 3ad2ant1 φjZkjdomF=Z
35 32 34 eleqtrrd φjZkjkdomF
36 35 ad5ant134 φ−∞xujZkjFk<xkdomF
37 36 adantl4r φx−∞xujZkjFk<xkdomF
38 simp-4r φ−∞xujZkjFk<x−∞xu
39 38 adantl4r φx−∞xujZkjFk<x−∞xu
40 16 a1i φxjZkjFk<x−∞*
41 simp-4r φxjZkjFk<xx
42 rexr xx*
43 41 42 syl φxjZkjFk<xx*
44 simp-4l φxjZkjFk<xφ
45 31 ad4ant23 φxjZkjFk<xkZ
46 5 ffvelcdmda φkZFk*
47 44 45 46 syl2anc φxjZkjFk<xFk*
48 47 mnfled φxjZkjFk<x−∞Fk
49 simpr φxjZkjFk<xFk<x
50 40 43 47 48 49 elicod φxjZkjFk<xFk−∞x
51 50 adantl3r φx−∞xujZkjFk<xFk−∞x
52 39 51 sseldd φx−∞xujZkjFk<xFku
53 37 52 jca φx−∞xujZkjFk<xkdomFFku
54 53 ex φx−∞xujZkjFk<xkdomFFku
55 30 54 ralimdaa φx−∞xujZkjFk<xkjkdomFFku
56 55 adantrr φx−∞xujZkjFk<xkjFk<xkjkdomFFku
57 24 56 mpd φx−∞xujZkjFk<xkjkdomFFku
58 57 3impb φx−∞xujZkjFk<xkjkdomFFku
59 6 r19.21bi φxjZkjFk<x
60 59 adantr φx−∞xujZkjFk<x
61 23 58 60 reximdd φx−∞xujZkjkdomFFku
62 4 rexuz3 MjZkjkdomFFkujkjkdomFFku
63 3 62 syl φjZkjkdomFFkujkjkdomFFku
64 63 ad2antrr φx−∞xujZkjkdomFFkujkjkdomFFku
65 61 64 mpbid φx−∞xujkjkdomFFku
66 65 rexlimdva2 φx−∞xujkjkdomFFku
67 66 ad2antrr φuordTop−∞ux−∞xujkjkdomFFku
68 19 67 mpd φuordTop−∞ujkjkdomFFku
69 68 ex φuordTop−∞ujkjkdomFFku
70 69 ralrimiva φuordTop−∞ujkjkdomFFku
71 15 17 70 3jca φF*𝑝𝑚−∞*uordTop−∞ujkjkdomFFku
72 nfcv _kF
73 72 8 lmbr3 φFtordTop−∞F*𝑝𝑚−∞*uordTop−∞ujkjkdomFFku
74 71 73 mpbird φFtordTop−∞
75 df-xlim *=tordTop
76 75 breqi F*−∞FtordTop−∞
77 76 a1i φF*−∞FtordTop−∞
78 74 77 mpbird φF*−∞