Metamath Proof Explorer


Theorem xpcomco

Description: Composition with the bijection of xpcomf1o swaps the arguments to a mapping. (Contributed by Mario Carneiro, 30-May-2015)

Ref Expression
Hypotheses xpcomf1o.1 F=xA×Bx-1
xpcomco.1 G=yB,zAC
Assertion xpcomco GF=zA,yBC

Proof

Step Hyp Ref Expression
1 xpcomf1o.1 F=xA×Bx-1
2 xpcomco.1 G=yB,zAC
3 1 xpcomf1o F:A×B1-1 ontoB×A
4 f1ofun F:A×B1-1 ontoB×AFunF
5 funbrfv2b FunFuFwudomFFu=w
6 3 4 5 mp2b uFwudomFFu=w
7 ancom udomFFu=wFu=wudomF
8 eqcom Fu=ww=Fu
9 f1odm F:A×B1-1 ontoB×AdomF=A×B
10 3 9 ax-mp domF=A×B
11 10 eleq2i udomFuA×B
12 8 11 anbi12i Fu=wudomFw=FuuA×B
13 6 7 12 3bitri uFww=FuuA×B
14 13 anbi1i uFwwGvw=FuuA×BwGv
15 anass w=FuuA×BwGvw=FuuA×BwGv
16 14 15 bitri uFwwGvw=FuuA×BwGv
17 16 exbii wuFwwGvww=FuuA×BwGv
18 fvex FuV
19 breq1 w=FuwGvFuGv
20 19 anbi2d w=FuuA×BwGvuA×BFuGv
21 18 20 ceqsexv ww=FuuA×BwGvuA×BFuGv
22 elxp uA×Bzyu=zyzAyB
23 22 anbi1i uA×BFuGvzyu=zyzAyBFuGv
24 nfcv _zFu
25 nfmpo2 _zyB,zAC
26 2 25 nfcxfr _zG
27 nfcv _zv
28 24 26 27 nfbr zFuGv
29 28 19.41 zyu=zyzAyBFuGvzyu=zyzAyBFuGv
30 nfcv _yFu
31 nfmpo1 _yyB,zAC
32 2 31 nfcxfr _yG
33 nfcv _yv
34 30 32 33 nfbr yFuGv
35 34 19.41 yu=zyzAyBFuGvyu=zyzAyBFuGv
36 anass u=zyzAyBFuGvu=zyzAyBFuGv
37 fveq2 u=zyFu=Fzy
38 opelxpi zAyBzyA×B
39 sneq x=zyx=zy
40 39 cnveqd x=zyx-1=zy-1
41 40 unieqd x=zyx-1=zy-1
42 opswap zy-1=yz
43 41 42 eqtrdi x=zyx-1=yz
44 opex yzV
45 43 1 44 fvmpt zyA×BFzy=yz
46 38 45 syl zAyBFzy=yz
47 37 46 sylan9eq u=zyzAyBFu=yz
48 47 breq1d u=zyzAyBFuGvyzGv
49 df-br yzGvyzvG
50 df-mpo yB,zAC=yzv|yBzAv=C
51 2 50 eqtri G=yzv|yBzAv=C
52 51 eleq2i yzvGyzvyzv|yBzAv=C
53 oprabidw yzvyzv|yBzAv=CyBzAv=C
54 49 52 53 3bitri yzGvyBzAv=C
55 54 baib yBzAyzGvv=C
56 55 ancoms zAyByzGvv=C
57 56 adantl u=zyzAyByzGvv=C
58 48 57 bitrd u=zyzAyBFuGvv=C
59 58 pm5.32da u=zyzAyBFuGvzAyBv=C
60 59 pm5.32i u=zyzAyBFuGvu=zyzAyBv=C
61 36 60 bitri u=zyzAyBFuGvu=zyzAyBv=C
62 61 exbii yu=zyzAyBFuGvyu=zyzAyBv=C
63 35 62 bitr3i yu=zyzAyBFuGvyu=zyzAyBv=C
64 63 exbii zyu=zyzAyBFuGvzyu=zyzAyBv=C
65 23 29 64 3bitr2i uA×BFuGvzyu=zyzAyBv=C
66 17 21 65 3bitri wuFwwGvzyu=zyzAyBv=C
67 66 opabbii uv|wuFwwGv=uv|zyu=zyzAyBv=C
68 df-co GF=uv|wuFwwGv
69 df-mpo zA,yBC=zyv|zAyBv=C
70 dfoprab2 zyv|zAyBv=C=uv|zyu=zyzAyBv=C
71 69 70 eqtri zA,yBC=uv|zyu=zyzAyBv=C
72 67 68 71 3eqtr4i GF=zA,yBC