Metamath Proof Explorer


Theorem xpsnen

Description: A set is equinumerous to its Cartesian product with a singleton. Proposition 4.22(c) of Mendelson p. 254. (Contributed by NM, 4-Jan-2004) (Revised by Mario Carneiro, 15-Nov-2014)

Ref Expression
Hypotheses xpsnen.1 AV
xpsnen.2 BV
Assertion xpsnen A×BA

Proof

Step Hyp Ref Expression
1 xpsnen.1 AV
2 xpsnen.2 BV
3 snex BV
4 1 3 xpex A×BV
5 elxp yA×Bxzy=xzxAzB
6 inteq y=xzy=xz
7 6 inteqd y=xzy=xz
8 vex xV
9 vex zV
10 8 9 op1stb xz=x
11 7 10 eqtrdi y=xzy=x
12 11 8 eqeltrdi y=xzyV
13 12 adantr y=xzxAzByV
14 13 exlimivv xzy=xzxAzByV
15 5 14 sylbi yA×ByV
16 opex xBV
17 16 a1i xAxBV
18 eqvisset x=yyV
19 ancom y=xzxAzBzBy=xzxA
20 anass y=xzxAzBy=xzxAzB
21 velsn zBz=B
22 21 anbi1i zBy=xzxAz=By=xzxA
23 19 20 22 3bitr3i y=xzxAzBz=By=xzxA
24 23 exbii zy=xzxAzBzz=By=xzxA
25 opeq2 z=Bxz=xB
26 25 eqeq2d z=By=xzy=xB
27 26 anbi1d z=By=xzxAy=xBxA
28 2 27 ceqsexv zz=By=xzxAy=xBxA
29 inteq y=xBy=xB
30 29 inteqd y=xBy=xB
31 8 2 op1stb xB=x
32 30 31 eqtr2di y=xBx=y
33 32 pm4.71ri y=xBx=yy=xB
34 33 anbi1i y=xBxAx=yy=xBxA
35 anass x=yy=xBxAx=yy=xBxA
36 34 35 bitri y=xBxAx=yy=xBxA
37 24 28 36 3bitri zy=xzxAzBx=yy=xBxA
38 37 exbii xzy=xzxAzBxx=yy=xBxA
39 5 38 bitri yA×Bxx=yy=xBxA
40 opeq1 x=yxB=yB
41 40 eqeq2d x=yy=xBy=yB
42 eleq1 x=yxAyA
43 41 42 anbi12d x=yy=xBxAy=yByA
44 43 ceqsexgv yVxx=yy=xBxAy=yByA
45 39 44 bitrid yVyA×By=yByA
46 18 45 syl x=yyA×By=yByA
47 46 pm5.32ri yA×Bx=yy=yByAx=y
48 32 adantr y=xBxAx=y
49 48 pm4.71i y=xBxAy=xBxAx=y
50 43 pm5.32ri y=xBxAx=yy=yByAx=y
51 49 50 bitr2i y=yByAx=yy=xBxA
52 ancom y=xBxAxAy=xB
53 47 51 52 3bitri yA×Bx=yxAy=xB
54 4 1 15 17 53 en2i A×BA