Description: A set is equinumerous to its Cartesian product with a singleton. Proposition 4.22(c) of Mendelson p. 254. (Contributed by NM, 4-Jan-2004) (Revised by Mario Carneiro, 15-Nov-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | xpsnen.1 | |
|
xpsnen.2 | |
||
Assertion | xpsnen | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpsnen.1 | |
|
2 | xpsnen.2 | |
|
3 | snex | |
|
4 | 1 3 | xpex | |
5 | elxp | |
|
6 | inteq | |
|
7 | 6 | inteqd | |
8 | vex | |
|
9 | vex | |
|
10 | 8 9 | op1stb | |
11 | 7 10 | eqtrdi | |
12 | 11 8 | eqeltrdi | |
13 | 12 | adantr | |
14 | 13 | exlimivv | |
15 | 5 14 | sylbi | |
16 | opex | |
|
17 | 16 | a1i | |
18 | eqvisset | |
|
19 | ancom | |
|
20 | anass | |
|
21 | velsn | |
|
22 | 21 | anbi1i | |
23 | 19 20 22 | 3bitr3i | |
24 | 23 | exbii | |
25 | opeq2 | |
|
26 | 25 | eqeq2d | |
27 | 26 | anbi1d | |
28 | 2 27 | ceqsexv | |
29 | inteq | |
|
30 | 29 | inteqd | |
31 | 8 2 | op1stb | |
32 | 30 31 | eqtr2di | |
33 | 32 | pm4.71ri | |
34 | 33 | anbi1i | |
35 | anass | |
|
36 | 34 35 | bitri | |
37 | 24 28 36 | 3bitri | |
38 | 37 | exbii | |
39 | 5 38 | bitri | |
40 | opeq1 | |
|
41 | 40 | eqeq2d | |
42 | eleq1 | |
|
43 | 41 42 | anbi12d | |
44 | 43 | ceqsexgv | |
45 | 39 44 | bitrid | |
46 | 18 45 | syl | |
47 | 46 | pm5.32ri | |
48 | 32 | adantr | |
49 | 48 | pm4.71i | |
50 | 43 | pm5.32ri | |
51 | 49 50 | bitr2i | |
52 | ancom | |
|
53 | 47 51 52 | 3bitri | |
54 | 4 1 15 17 53 | en2i | |