Metamath Proof Explorer


Theorem xrsdsreclb

Description: The metric of the extended real number structure is only real when both arguments are real. (Contributed by Mario Carneiro, 3-Sep-2015)

Ref Expression
Hypothesis xrsds.d D=dist𝑠*
Assertion xrsdsreclb A*B*ABADBAB

Proof

Step Hyp Ref Expression
1 xrsds.d D=dist𝑠*
2 1 xrsdsval A*B*ADB=ifABB+𝑒AA+𝑒B
3 2 3adant3 A*B*ABADB=ifABB+𝑒AA+𝑒B
4 3 eleq1d A*B*ABADBifABB+𝑒AA+𝑒B
5 eleq1 B+𝑒A=ifABB+𝑒AA+𝑒BB+𝑒AifABB+𝑒AA+𝑒B
6 5 imbi1d B+𝑒A=ifABB+𝑒AA+𝑒BB+𝑒AABifABB+𝑒AA+𝑒BAB
7 eleq1 A+𝑒B=ifABB+𝑒AA+𝑒BA+𝑒BifABB+𝑒AA+𝑒B
8 7 imbi1d A+𝑒B=ifABB+𝑒AA+𝑒BA+𝑒BABifABB+𝑒AA+𝑒BAB
9 1 xrsdsreclblem A*B*ABABB+𝑒AAB
10 xrletri A*B*ABBA
11 10 3adant3 A*B*ABABBA
12 11 orcanai A*B*AB¬ABBA
13 necom ABBA
14 13 3anbi3i A*B*ABA*B*BA
15 3ancoma A*B*BAB*A*BA
16 14 15 bitri A*B*ABB*A*BA
17 1 xrsdsreclblem B*A*BABAA+𝑒BBA
18 16 17 sylanb A*B*ABBAA+𝑒BBA
19 ancom BAAB
20 18 19 imbitrdi A*B*ABBAA+𝑒BAB
21 12 20 syldan A*B*AB¬ABA+𝑒BAB
22 6 8 9 21 ifbothda A*B*ABifABB+𝑒AA+𝑒BAB
23 4 22 sylbid A*B*ABADBAB
24 1 xrsdsreval ABADB=AB
25 recn AA
26 recn BB
27 subcl ABAB
28 25 26 27 syl2an ABAB
29 28 abscld ABAB
30 24 29 eqeltrd ABADB
31 23 30 impbid1 A*B*ABADBAB