Metamath Proof Explorer


Theorem xsubge0

Description: Extended real version of subge0 . (Contributed by Mario Carneiro, 24-Aug-2015)

Ref Expression
Assertion xsubge0 A * B * 0 A + 𝑒 B B A

Proof

Step Hyp Ref Expression
1 elxr B * B B = +∞ B = −∞
2 0xr 0 *
3 rexr B B *
4 xnegcl B * B *
5 xaddcl A * B * A + 𝑒 B *
6 4 5 sylan2 A * B * A + 𝑒 B *
7 3 6 sylan2 A * B A + 𝑒 B *
8 simpr A * B B
9 xleadd1 0 * A + 𝑒 B * B 0 A + 𝑒 B 0 + 𝑒 B A + 𝑒 B + 𝑒 B
10 2 7 8 9 mp3an2i A * B 0 A + 𝑒 B 0 + 𝑒 B A + 𝑒 B + 𝑒 B
11 3 adantl A * B B *
12 xaddid2 B * 0 + 𝑒 B = B
13 11 12 syl A * B 0 + 𝑒 B = B
14 xnpcan A * B A + 𝑒 B + 𝑒 B = A
15 13 14 breq12d A * B 0 + 𝑒 B A + 𝑒 B + 𝑒 B B A
16 10 15 bitrd A * B 0 A + 𝑒 B B A
17 pnfxr +∞ *
18 xrletri3 A * +∞ * A = +∞ A +∞ +∞ A
19 17 18 mpan2 A * A = +∞ A +∞ +∞ A
20 mnflt0 −∞ < 0
21 mnfxr −∞ *
22 xrltnle −∞ * 0 * −∞ < 0 ¬ 0 −∞
23 21 2 22 mp2an −∞ < 0 ¬ 0 −∞
24 20 23 mpbi ¬ 0 −∞
25 xaddmnf1 A * A +∞ A + 𝑒 −∞ = −∞
26 25 breq2d A * A +∞ 0 A + 𝑒 −∞ 0 −∞
27 24 26 mtbiri A * A +∞ ¬ 0 A + 𝑒 −∞
28 27 ex A * A +∞ ¬ 0 A + 𝑒 −∞
29 28 necon4ad A * 0 A + 𝑒 −∞ A = +∞
30 0le0 0 0
31 oveq1 A = +∞ A + 𝑒 −∞ = +∞ + 𝑒 −∞
32 pnfaddmnf +∞ + 𝑒 −∞ = 0
33 31 32 eqtrdi A = +∞ A + 𝑒 −∞ = 0
34 30 33 breqtrrid A = +∞ 0 A + 𝑒 −∞
35 29 34 impbid1 A * 0 A + 𝑒 −∞ A = +∞
36 pnfge A * A +∞
37 36 biantrurd A * +∞ A A +∞ +∞ A
38 19 35 37 3bitr4d A * 0 A + 𝑒 −∞ +∞ A
39 38 adantr A * B = +∞ 0 A + 𝑒 −∞ +∞ A
40 xnegeq B = +∞ B = +∞
41 xnegpnf +∞ = −∞
42 40 41 eqtrdi B = +∞ B = −∞
43 42 adantl A * B = +∞ B = −∞
44 43 oveq2d A * B = +∞ A + 𝑒 B = A + 𝑒 −∞
45 44 breq2d A * B = +∞ 0 A + 𝑒 B 0 A + 𝑒 −∞
46 breq1 B = +∞ B A +∞ A
47 46 adantl A * B = +∞ B A +∞ A
48 39 45 47 3bitr4d A * B = +∞ 0 A + 𝑒 B B A
49 oveq1 A = −∞ A + 𝑒 +∞ = −∞ + 𝑒 +∞
50 mnfaddpnf −∞ + 𝑒 +∞ = 0
51 49 50 eqtrdi A = −∞ A + 𝑒 +∞ = 0
52 51 adantl A * A = −∞ A + 𝑒 +∞ = 0
53 30 52 breqtrrid A * A = −∞ 0 A + 𝑒 +∞
54 0lepnf 0 +∞
55 xaddpnf1 A * A −∞ A + 𝑒 +∞ = +∞
56 54 55 breqtrrid A * A −∞ 0 A + 𝑒 +∞
57 53 56 pm2.61dane A * 0 A + 𝑒 +∞
58 mnfle A * −∞ A
59 57 58 2thd A * 0 A + 𝑒 +∞ −∞ A
60 59 adantr A * B = −∞ 0 A + 𝑒 +∞ −∞ A
61 xnegeq B = −∞ B = −∞
62 xnegmnf −∞ = +∞
63 61 62 eqtrdi B = −∞ B = +∞
64 63 adantl A * B = −∞ B = +∞
65 64 oveq2d A * B = −∞ A + 𝑒 B = A + 𝑒 +∞
66 65 breq2d A * B = −∞ 0 A + 𝑒 B 0 A + 𝑒 +∞
67 breq1 B = −∞ B A −∞ A
68 67 adantl A * B = −∞ B A −∞ A
69 60 66 68 3bitr4d A * B = −∞ 0 A + 𝑒 B B A
70 16 48 69 3jaodan A * B B = +∞ B = −∞ 0 A + 𝑒 B B A
71 1 70 sylan2b A * B * 0 A + 𝑒 B B A